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This document is the final report on Contract NASw-916 between the National

Aeronautics and Space Administration and the Research and Advanced Develop-

ment Division of Avco Corporation. The objectives of the contract were

1. to calculate resonant atom-ion charge-exchange cross sections as

functions of the relative collision velocity for nitrogen and oxygen; and

Z. to determine the thermal and electrical conductivity coefficients as

functions of temperature for argon and nitrogen, from spectroscopic and

electrical measurements on a laminar electric-arc column.

The program was carried out under the sponsorship of the Research Division,

Office of Advanced Research and Technology, National Aeronautics and Space

Administration, under the technical supervision of Alfred Gessow, Chief of the

Physics of Fluids Program. The Avco/RAD project director was Dr. Stewart

Bennett. Dr. W. L. Bade and Mr. James Morris were project engineers.

Dr. C. F. Knopp carried out the experimental investigations. Dr. Jerrold M.

Yos performed the theoretical calculations of charge exchange and derived the

explicit solution of the Elenbaas-Heller equations for the thermal and electrical

conductivity.

The key suggestion that far-ultraviolet radiation might play an important role

in constricted arc columns was made independently by A. Gessow of NASA and

Prof. H. A. Bethe of Cornell University, an Avco consultant.
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I. INTRODUCTION

This report presents the results obtained during the first year of a NASA-sup-

ported program of research on high-temperature gas transport properties. The

program emphasizes gas species which are present under thermally dissociated

and/or ionized conditions in the atmospheres of Earth, Venus, and Mars. During
this first year, the program has included two lines of effort:

1. Establishment of a wall-stabilized arc as a standard tool for experimental

determination of thermal conductivity and certain other transport properties,

and investigation of high-temperautre argon and nitrogen by this method.

2. Development of a technique for calculating interaction potentials between

atoms and/or atomic ions from their analytic Hartree-Fock wavefunctions,

and application of this technique to determination of the charge-exchange

cross sections for the systems N-N + and O-O +.

The use of cylindrical wall-stabilized arcs for determining high-temperature

transport properties was originated by Maecker 1, who used this technique to

obtain thermal conductivity values for nitrogen at atmospheric pressure and

temperatures from 5000 to 15,500@K. At the higher temperatures in this range,

Maecker_s experimental values are about ten times higher than those obtained

from the best available theoretical calculations Z of thermal conductivity for

equilibrium nitrogen. Moreover, at these higher temperatures, the experimental

conductivity is an apparent function of arc current. This finding indicates the

presence of an energy transport mechanism which has not been allowed for

properly in the analysis of the data. One of the objectives of the present program

is to elucidate the reasons for these discrepancies and to obtain correct and

reasonably accurate values for the high-temperature thermal conductivity of

nitrogen.

In a more recent application of the wall-stabilized arc technique, Knopp- has

measured the thermal conductivity of argon from 9000 to 12, 000°K using an

apparatus with a transparent quartz constrictor. Knopp's data agree reasonably
well with theoretical calculations 4 for argon.

The present investigation has included studies of both argon and nitrogen. In

the case of argon, a considerable experimental effort was required to reduce

the "bulging" of the arc column into the gap between the constrictors. The

experimental data for argon have been analyzed for thermal conductivity by

three methods, all based upon the energy equation for an optically thin, cylin-

drically symmetric arc column (Elenbaas - Holler equation). The thermal con-

ductivity values obtained for argon are within about 40 percent of the theoretical

predictions, but discrepancies between the results of the different methods

suggest the presence of some systematic errors in the data. A study of
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literature data on the absorption coefficient of argon in the vacuum ultraviolet

has now led to the conclusion that the argon arc column emits a significant amount

of radiation in that wavelength region, and is relatively opaque to such

radiation. The effects of emission and absorption of this radiation may account,

in large part, for the apparent discrepancies among the experimental results

and between them and the theoretical predictions.

In the case of nitrogen, the experimental results obtained in the present investi-

gation are similar to those reported by Maecker. If they are interpreted using

the Elenbaas - Heller equation, assuming that the only radiative contribution

to the energy balance is that given by the observed radiation in the infrared,

visible, and near ultraviolet, then the thermal conductivity values obtained are

much higher than theoretical predictions, and show a significant dependence

on arc current. However, available calculations of the absorption coefficient

of high-temperature nitrogen in the far-ultraviolet indicate the emission of very
large amounts of radiation in that region. Inclusion of this vacuum ultraviolet

radiation in the assumed radiative loss largely eliminates the dependence of

thermal conductivity on current, and brings the experimental values down into

approximate agreement with theory.

Neither the argon nor the nitrogen arc column is optically thin in the important

far-ultraviolet regions of wavelength. Thus, correct analysis of wall-stabilized

arc data for thermal conductivity requires a study of solutions of the Elenbaas-

Heuer equation with nongrey radiative transfer terms. This presumably difficult

problem has not yet been investigated. Consequently, the thermal conductivity
values reported for argon and nitrogen are not considered to be definitive.

Details of the wall-stabilized arc investigations carried out under the present
program are reported in section II.

Resonant charge-exchange processes, in which an electron is transferred from

an atom to a postive ion of the same species (e. g., N+N+---_N++N), play an

important role in determining the thermal conductivity of a gas at temperatures

where it is partially ionized. One of the chief mechanisms for transporting

energy through such a gas is ionization of neutral atoms at a higher temperature,
diffusion of the resulting ions and electrons to regions of lower temperature,

and recombination with thermal release of the energy of ionization. In cal-

culations of transport properties, the term corresponding to this process is

called the "reaction conductivity" for ionization. Charge exchange between the

diffusing ions and neutral atoms which they encounter impedes the transport

of energy by this mechanism. In atmospheric-pressure nitrogen at temperatures

of about 12,000 to 16,000°K, the ionization reaction is a major component of

the thermal conductivity, and its magnitude is strongly dependent on the charge-
exchange cross section.



The resonant chargeoexhangecross section for oxygen has been measured by
Stebbings, Smith, and Ehrhardt 5. No measurements are available at present

for nitrogen. The most recent calculation of these cross sections for nitrogen

and oxygen is that of Knof, Mason, and Vanderslice 6. Their results are based

upon use of a semiempirical valence bond method to generate the interaction

potential curves for nine unobserved states of NZ + or Oz + from extrapolations

of spectroscopically determined curves for three states. In the case of oxygen,

their results agree well with the experimental values of Stebbings, e_t al__5.

In the present investigation, resonant charge-exchange cross sections for

nitrogen and oxygen are obtained from quantum mechanical calculations which

do not make use of spectroscopic data for N2 + andO2 +. The results for oxygen

are in excellent agreement with the experimental data of Stebbingspet al. These

calculations are performed by a method which is completely independent of, and

probably more accurate than, that employed by Knof, et al. The method developed

under the present program is also applicable to cases in which insufficient

spectroscopic information is available to permit carrying out a semiempirical

valence bond calculation.

Details of this theoretical study of interaction potentials and charge-exchange

cross sections are reported in section III.
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II. EXPERIMENTAL DETERMINATION OF ELECTRICAL AND

THERMAL CONDUCTIVITIES IN A LAMINAR

ELECTRIC ARC COLUMN

A. BACKGROUND

Most previous experimental work on the transport properties of hot gases has

been performed in shock tubes. Although shock tubes provide a well-defined

geometry, the short duration of the test time available in these devices imposes

serious limitations upon the measurement of transport properties. For example,

the measurement of thermal conductivity by shock tube techniques relies upon

the accuracy and response capabilities of heat transfer gauges. A further source

of error is inherent in the analytical prediction of the temperature and pressure

of the test gas. The use of a wall-stabilized arc to generate a steady state,
stable, high-temperature gas column obviates these restrictions. It has been

demonstrated by numerous authors7 that equilibrium can be achieved in arc

columns over a wide range of operating conditions. For these reasons, the

wall- stabilize d arc appear s particular ly we 11 - suite d to the expe rime ntal de te r -
ruination, of transport properties, .....

The basicidea of the experimental technique discussed in the present section is

to heat a gas by operating an electric arc in it, to determine its temperature

distribution spectroscopically, and to •obtain its thermal conductivity by analyzing

the energy production, loss, and transport processes occurring in it, The

spectroscopic determination of the temperature distribution and the analysis of

the data to yield transport properties are feasible only ifthe heated gas has

such a high degree of symmetry that all relevant quantities are functions of only

a single spatial coordinate. This condition may be achieved by confining an arc-

gene rate d plasma within a long, small-diamete r, _,_-electrically nonconducting

tube with strongly cooled walls. The wall cooling produces a thermal boundary

layer in the gas which confines the high-temperature region of the flow to the

center of the tube and forces the temperature distribution to have cylindrical

symmetry. This experimental arrangement is commonly referred to as a wall-
stabilized or constricted arc.

In cylindrical coordinates, the ordinary energy equation of fluid dynamics,
addition of Joule heating and radiative loss terms, is

Oe V 0 Oe Oe O(1/p) O(1/p ) V0 0 (l/p)

_r + -- -- + Vz + _ + p Vr -- +r O0 _z P Ot Or r O0p + V r

= _1 0 OT 1 O 0 OT
K + + -- K + ¢ Prad

8 with

O(1/p_

ePVz -'_-'-zJ

(1)

*The diameter is small compared with the length of the tube, but much larger than capillary size.
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where

p -- mass density

-- internal energy per unit mass

Vi = i th component of the velocity

p = pressure

j -- current density

= electric field vector

K = thermal conductivity

= viscous dissipation term

Prad = radiative loss term (optically thin approximation)

In the wMI2stabilized arc used in this study and described in detail below, a

small, continuous flow of gas is introduced into a small plenum chamber and

bled from the chamber into the arc column proper. As a result, the flow has

Only an axial component of velocity in the region in which measurements are

performed; andnone of the important quantities depend upon _. Thus, ....

0

Ot

0
= 0

O0
(2)

Vo--O

Vr = 0

Equation (1) may therefore be written as

PVz _ + PP Vz Oz
+ -- K + +¢ (3)

r _-r " _-z - Prad

With the additional assumptions

(_.E) = a E 2 >> ¢

p _'- constant (4)

0T/0z _ O,
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i.' ,_i/_ili_:_i:i__¸ L¸ L ,

equation (3) can be further simplified to the form

aE 2 + g - Prad = 0.
r dr

This relation, frequently referred to as the Elenbaas-Heller equation, is used

to describe the energy transport in the arc column.

The description of radiative effects by a simple volumetric loss term Prad, as

in equations (1}, (3), and (5), implies the assumption that the arc column is

optically thin to its own thermal radiation in all regions and at all important

wavelengths. If this assumption is not made, then the radiative contributions to

the energy equation must be treated by the methods of the theory of transfer,

and equation (5) becomes an integro-differential equation.

If the Elenbaas-Heller equation (5) is valid, it can be used to obtain transport-

property values from experimental data on a wall-stabilized arc. In equation C5),

the voltage gradient E, the temperature distribution function TCr}, and the radia-

tive power loss Ptad (T} are all measurable quantities. If the electrical conduc-

tivity aCT ) is a known function, then the thermal conductivity KCT ) can be calcu-

lated from (5} by a quadrature. Details of this procedure are presented below

in section liE. Of course, this approach based upon the assumption of known

aCT) is somewhat objectionable, because a is really another transport property.

However, it is demonstrated in appendix A that, if the optically thin Elenbaas-

Heller equation (5) is valid, both the thermal conductivity and the electrical

conductivity are uniquely determined as functions of temperature by the experi-

mental data for any pair of arc runs with different axis temperatures.

Section B describes the experimental apparatus. The principal experimental

technique is the use of spectroscopic diagnostics to ascertain the radial tempera-

ture distribution in the arc column. Details of the spectroscopic methods em-

ployed and a critical evaluation of the applicability of these methods are given

in section C. Section D presents observations on argon and nitrogen. Section

E describes the methods used to analyze the data for transport properties, and

presents the results obtained for these two gases. Finally, section F summar-

izes the chief findings of the program to date and presents conclusions.

B. EXPERIMENTAL APPARATUS

The wall-stabilized arc facility used in this program is shown schematically in

figure I. This arc is capable of sustaining an axis temperature of 14, 000°K in

nitrogen or oxygen with an arc diameter of 4.8 mm and a current of 150 amperes.

The arc column is confined within a series of water-cooled, copper constrictors

electrically insulated from one another by molded silicone rubber gaskets. The

gaskets are pierced for observation windows so that the arc column may be ob-

served between any two constrictors or between the electrodes and a constrictor.

The width of each constrictor is 8 ram. The distance between adjacent constrictors

-6-
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is 1.25 mm, except in the case of the two constrictors between which the spec-

troscopic measurements are normally made. These have a separation of 0.25

ram. The observation window for spectroscopic measurements is made of

schlieren quality sapphire, while the other observation windows are fused silica.

The constrictors, electrode housings, and windows of the wall-stabilized arc

are made gas-tight with the insulating gaskets. The various gas inlets and exits

are metered with flow gauges and regulating valves which are used to control

the pressure and flow rates within the arc column. This arrangement allows

the option of choosing any flow rate, ranging from stagnation to full flow through

the observation chamber. When experiments are conducted on gases other than

those of the inert series, the electrodes are blanketed with argon. The flow

rates of argon and the test gas are balanced so that no argon is observed spec-

troscopically in the test region, but the electrodes remain immersed in argon.

Power for the arc is supplied by 84 truck batteries arranged in 4 banks of 21

batteries. These banks may be used in series or parallel combinations to obtain

open circuit voltages of 252, 504, or 1008 volts. The batteries are charged by

a three-phase rectifier on the 220-volt ac service line.

Gross adjustments to the'arc current are made with two variable, air-cooled

ballast resistors, each capable of carrying 200 amperes. Fine adjustment and

regulation Of the are current is accomplished by a water-cooled stainless steel

tube with a sliding contact. Regulation is provided by a potentiometric reading

of the dlfference in voltage across a precision shunt in the arc power lead and

a pre-set reference voltage. The voltage difference is displayed upon a rotating

beam galvanometer. As the beam swings to pre-set limits, photoconductive

cells actuate the sliding contact on the stainless steel tubing. Using this system,

it is _ossible to maintain constant arc current to within ±0. 001 ampere. A

ph0tograph of the arc operating in argon at atmospheric pressure and a current

of 60 amperes is shown in figure 2.

A 0.75-meter, f/10 grating monochrometer employing a Czerny-Turner mount-

ing is used to obtain the spectroscopic measurements necessary for the deter-

mination of radial temperature distributions within the arc column. This instru-

ment, which was constructed in our laboratory, has a reciprocal linear disper-

sion of 10.8 A/mm in the first order at 4000A. The radiation detector is an

RCA type 1P21 or EMI type 6255B photomultiplier. The photomultiplier power

supply has 0.01-percent regulation and ripple suppression. The photomultiplier

signal is measured and amplified by a pico-ammeter having a linearity of 2

percent. The output signal of the amplifier is digitized and, along with the gain

of the amplification system, punched onto computer cards in a semiautomatic

m anne r.

-8-



Figure 2 PHOTOGRAPH OF THE ARGON ARC A T  60 AMPERES, 
ATMOSPHERIC PRESSURE 
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Figure 3 depicts the optical system used to obtain the integrated intensity dis-

tribution_ of a spectral line or continuum band. The image of the arc column

is focused upon the entrance slit of the monochrorneter by the imaging lens.

This lens is apertured to alleviate distortion and to provide a large depth of field.

The f-number of the optical system is approximately f/70, providing a depth of
field suffici_nt to ensure that both the front and back of the arc column are in

focus when the lens is focused on the axis of the arc column.

The arc column is imaged upon the entrance slit of the monochrometer in such

a way that the axis of the arc is parallel to the entrance slit. Spatial resolution

is accomplished by the use of a 25-micron entrance slit combined with a 0.65-

mm slit placed in the same plane and perpendicular to the entrance slit. Based

upon the effective slit widths and the magnification of the optical system, this

arrangement provides an effective spatial resolution of approximately 0.2 mm

along the axis of the column and approximately 0.05 mm perpendicular to the
axis.

Calibration of the electronic and optical systems is provided by an NBS tungsten

standard lamp located at the same position as that normally occupied by the arc

facility.

C. SPECTROSCOPIC TECHNIQUES

The basic variable determined experimentally in this study is the temperature

of the plasma column. At th@ temperatures and pressures of interest, probe or

microwave techniques are of littlevalue. Emission spectroscopy, however, is

a powerful diagnostic tool for the conditions encountered in high pressure arc
columns.

The basic fact. underlying all _ctroscopic measurements o_ temperature is that ....

the measured quantity (radiation intensity) is determined by two variables of

state of the plasma (temperature and number density of the radiating species):

ii = li (hi,T) (6)

where Ii is the radiation intensity emanating from the number density nl of par-

ticles of type i at a temperature T. Thus, to obtain T from a measurement o_ Ii ,

the dependence of ni upon T must be known. For a gas in equilibrium at a given

pressure, the species number densities are determined as _unctions of ter_pera-
ture by the laws of statistical thermodynamicsl 9, 10 In general, solution of this

problem requires computer solution of a series of mass action (Saha) equ_tton_

'The basic auantltv measured in these ext_eriments is the sttm of intensity contributions, in _ ee_|. _m_ll wavelenl_h

interval, from gas elements lying along a rectilinear optical path through the arc column. The optics| p_h I _ _l_h_

angles to the arc axis, but in general does not pass through the axis. The sum ofintensity eontribu_lon_, con_|d_ft
as a function of the perpendicular distance from the arc axis to the optical path, is briefly _¢rmedthe "Integrated
intensity."
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coupled with Dalton's law of partial pressures and the assumption of charge

neutrality. When this thermodynamic relation between n. and T is taken into
!

account, equation (6) reduces to

I i = I i (T),

and a measurement of Ii then determines the value of the temperature T.

(7)

The radiation emanating from the plasma produced in a wall-stabilized arc con-

sists of a discrete spectrum superposed upon a background of continuous radia-

tion. Both line and continuum radiation may be used to determine the tempera-

ture of the gas.

The absolute radiant intensity of a spectral line which is emitted spontaneously

in all directions by a unit volume of the plasma is proportional to the spontaneous

transition probability A m for a transition from the upper energy state m to the

lower energy state n ; to the number of atoms, nm , in the upper state; and to the

energy of the light quanta, h Vmn (Vmn = frequency of emitted light). It is customary

to speak of radiant intensity per unit solid angle, so that the intensity per unit

volume per steradian of a spectral line is given by

1
= _ A m h n m (8)

Imn 4 rt n Vmn

In an equilibrium situation, the distribution of electrons in the various energy

levels of the atom is given by the Boltzmann distribution, so that the absolute

intensity of a spectral line emanating from a homogeneous unit volume is found
to be

1 Anm hymn na gm

exp (-E /kT) (9)
Imn = _ Qa m

where Qa is the partition function of the atom, gm is the degeneracy of the mth

energy level, n a is the total number of atoms per unit volume, and Em is the

energy of the ruth level. Equation (9) may be applied when the radiating volume

is optically thin and the number of exciting collisions is large compared with

the number of emissions. These conditions are well satisfied in the visible

region of the spectrum for the operating conditions and gases employed in the

experiments reported here.

Equation (9) shows that in order to determine temperature from the intensity of

a spectral line it is necessary to have prior knowledge of the transition probabil-

ity, the partition function, and the number density of emitters as a function of

temperature. It is also necessary to know the upper energy level of the line

being emitted.
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Transition probabilities for nitrogen and argon have been determined experi-

mentally by several authors. The most recent and probably the most accurate

investigation of argon transition probabilities was conducted by 01sen, 11 whose

data have been used in this investigation. The experimental transition probabil-

ities available for nitrogen show a great deal more scatter than those for argon.

Following a suggestion of Sotarski and Wiese, 12 the nitrogen transition probabil-

ities calculated by Bates and Damgaardl3 have been employed. These calculated

transition probabilities are quite close to the mean of the available experimental

data. The upper energy levels of both argon and nitrogen were taken from the

data compiled by Moore. t4

Partition functions and number densities of the various components of high-

temperature argon and nitrogen were taken from the tables of Drellishak,c_t al. 9p 10
These data were used in calculations of line and continuum intensities as func-

tions of temperature.

Figure 4 shows the dependence of the absolute intensity of the 4158.59-A ArI line

on temperature at a pressure of one atmosphere. The upper energy levels of

the principal argon lines differ by only a small amount, so that figure 4 is repre-

sentative of the temperature dependence of the visible and near-infrared argon
lines. Theoretical intensity versus temperature curves for selected atomic

nitrogen lines are shown in figure 5.

The effect of an error in the measured intensity upon the calculated temperature

is shown in figure 6 for the 4158.59-A ArI line. The errors shown in this figure

are typical of those to be expected with any argon line in the visible or near-in-

frared. Because of the similarity of ionization energies of argon and nitrogen,

figure 6 is also representative of the errors to be expected when using any of

the three nitrogen lines given in figure 5. The insensitivity of temperature to

errors in intensity makes absolute intensity measurements of spectral lines a
powerful method for determining tempe rature.

An alternate method of spectroscopic temperature measurement is provided by

continuum radiation. Continuum radiation is emitted by a hot gas through two

mechanisms: free-free or Bremsstrahlung radiation, and radiative recombina-

tion processes which give rise to a free-bound continuum. Since radiant energy
is additive, the total continuum radiation is the sum of these two processes and

a separate measurement of each cannot be obtained experimentally.

Since the continuum radiation immediately adjacent to a spectral line must be

measured in order to separate the line from the background, it is advantageous

to use the continuum radiation as a technique for measuring temperature. Use

of the continuum has the advantage of requiring only one measurement of the

intensity of the gas at a given wavelength, rather than the two needed in the case

of a spectral line.

-13-
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Theoretical calculations of absolute continuum intensity are not on as firm a

footing as those for line radiation. The Kramers-UnsSld expression,

I = 5.41 × 10 -46

whe re

-- E i i 2 n i
Z 2 =

n it

m

Z 2
n e nit

T 1/2
( W/ca 3 - ster-sec) (lO)

Xi i 2 ni

£i ni

and ne iS the electron density, gives the correct functional dependence for the

argon continuum radiation throughout the temperature range examined, and for

the nitrogen continuum for temperatures above approximately 9,000°K. The

absolute magnitude given by this expression is in error by varying amounts, de-

pending upon the gas. Consequently, the continuum bands used for temperature

measurements were calibrated with lines of known transition probability.

Figure 7 shows, for argon, the absolute intensity ofa IA continuum band centered

at 4285A. Similarly, for nitrogen, figure 8 depicts the intensity of a IA con-

tinuum band centered at 4955A. The effect upon the measured temperature of

errors in spectrographic measurements is shown in figure 9 for argon. As in

the case of absolute line measurements, the error curves for nitrogen are quite

similar. It will be appreciated froln figure 9 that the determination of tempera-

ture from measurements of absolute continuum intensity is insensitive to experi-

mental errors in the temperature range covered to date.

D. EXPERIMENTAL OBSERVATIONS

The objective of the experimental measurements has been to determine the

thermodynamic state of the gas as a function of the radial coordinate of the column,

and to use this measured state to determine the thermal and electrical conduc-

tivities as functions of temperature. The general approach in the spectrographic

investigation has been to determine the temperature from absolute line and con-

tinuum measurements. The remaining information necessary for a solution of

the Elenbaas-Heller equation (5) is obtained from measurements of the applied

electric field strength in the column, the arc current, and the volumetric radia-

tive losses.

The integrated intensity distribution of the arc column is obtained by translating

the image of the column across the entrance slit of the monochrometer. In taking

measurements, the arc is moved an incremental distance and stopped, and the

intensity is then measured. The amplification of the photomultiplier signal is

automatically optimized for each measurement. This technique is considered

to be superior to continuously scanning the image of the arc column, since it

allows reliable measurements to be obtained for intensities varying by as much

as a factor of 103, a considerably wider range than can be measured successfully

-17-
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by a continuous scan. The relative position of the arc column is controlled by
a drive motor and a dial indicator. The centerline of the column is determined

by taking intensity measurements at incremental distances across the entire

arc diameter, plotting the signals obtained, and folding the plot so that the curves

to the right and left of the center are mirror images. In actual practice, this

operation is performed by machine calculation. Figure I0 shows the results of

the centering routine. In this figure, points from both right and left of the center

line are plotted.

The integrated intensity distribution is converted to a radial intensity distribution

by an inversion of the Abel integral equation. Implicit in the solution of this

equation is a process of numerical differentiation. In the technique used, the

differentiation is performed by curve fitting a region of the integrated intensity
distribution to obtain smooth derivatives. This is similar to the method em-

ployed by Barr. 15 As is characteristic of numerical differentiation, derivatives

at the end points of the curve tend to be unreliable. The accuracy of the inver-

sion technique has been checked by inverting numerically a function which could

be inverted analytically. It was found that the numerical technique gave excellent

results except at the first three inverted points. As the inversion starts at the

outer edge of the integrated intensity distribution and works inward, the error

due to numerical methods occurs at the outer edge of the radial intensity distri-

bution. The error inherent in numerical differentiation is aggravated by the

shape of the integrated intensity distribution. At the periphery of the arc column,

the gradient of the integrated intensity is extremely large, the intensity changing

by an order of magnitude or more within 5 percent of the projected radius. Con-

sequently, inversion of the integrated intensity distribution using, say, 20 incre-

ments across the projected radius tends to decrease the gradient and produce

artificially high inverted values at the outer edge. Greater resolution at the outer

edge of the distribution is obtained by using a finer mesh for the numerical in-

version. At present, a fifty-zone inversion is used. This is a sufficient number

of zones to give good results for large gradients. Figure 11 shows the radial in-

tensity distribution obtained from the integrated intensity distribution of figure 10.

In the initial experiments with argon, it was found that the arc column was rather

severely distorted in the region between constrictors. The distortion appeared

as a "bulge" in the luminous column. Such bulging is a significant deviation from

the cylindrical symmetry required for the validity of the Elenbaas-Heller equa-

tion and determination of transport properties. This type of problem is particu-
larly disturbing since the distortion of the column occurs at the same location

at which measurements are taken. Qualitative observations indicated that bulging

of the arc column was much more severe for argon than for nitrogen or oxygen.
For this reason the argon arc column was examined in detail; it was felt that an

experimental solution to the bulging of the argon column would allow measure-

ments in nitrogen and oxygen to be made with confidence.

It was found that the apparent bulging of the argon column could be eliminated

for currents up to at least 100 amperes (axis temperature of 13,700°K) by
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reducing the width of the gap between constrictors to 5 percent of the channel

diameter and by reducing the gas flow rate to 10-3 gm/sec.

With procedures for obtaining approximate cylindrical symmetry of the arc
column thus established, the main effort was directed toward determination of

transport properties for argon and nitrogen. Temperatures in the arc column

were determined on the basis of absolute intensity measurements of continuum

radiation, the n_trogen and argon continuum radiation having been calibrated

previously against spectral lines. Integrated intensity distribitions were obtained

in argon for a continuum band at 4285A at arc currents of 30, 40, 50, 60, 80,

and 100 amperes, and in nitrogen for a continuum band at 4955A at currents of

40, 50, 60, 80, 100, and 150 amperes. In each case a level of scattered light

was evident at the outer periphery of the arc column. An example of this can

be seen in figure 10, where the scattered light is manifested as a region of con-

stant intensity at the outer edge of the distribution. In order to approximate the

true course of the integrated intensity distribution, a correction was made for

the scattered light. Figures lZ and 13 show the radial temperature distributions

obtained for argon, and figures 14 and 15 those for nitrogen.

The temperature profiles in the region from 1,000°K to 5,000°K were calculated

from the conductive energy flux to the walls and the classical thermal conductivity.

At 5,000 ° Kthe internal excitation of argon atoms is low enough that the thermal

conductivity given by Amdur and Mason 16 is applicable. For nitrogen, the situa-

tion is not quite as favorable, although the thermal conductivity at 5,000°K is

sufficiently well-known to permit reasonably accurate temperature profile s to

be constructed. The values of Yos 17 were used for nitrogen. The dotted por-

tions of the temperature profiles represent interpolation between the calculated

and measured portions of the profiles. Neither the calculated nor the inter-

polated portions were used to obtain thermal conductivity.

The dissimilarity in temperature profiles between argon and nitrogen is due to

the presence, in the thermal conductivity curve for nitrogen, of the reaction

conductivity peak corresponding to dissociation. The inflection point in the nitro-

gen profiles corresponds to this extremum in the thermal conductivity.

It is estimated that the uncertainty in the intensity of the NBS standard lamp is

approximately ± 5 percent. The uncertainty in the detection and recording sys-

tem is estimated to be • 2 percent. For line radiation, the uncertainty in the

transition probabilities and the ratio of number density to partition function is

estimated to be ±8 percent. For the continuum radiation, it is reasonable to

expect the same sort of uncertainty in the product of the constant determined

from calibration of continuum with line radiation, the ion density, and the elec-

tron density. It can be seen from figure 6 that a ± 15-percent uncertainty in the

absolute line intensity produces a ±1.5-percent uncertainty in the temperature

at 12, 000°K. Analogously, figure 9 shows that the uncertainty to be expected

in the temperature determined from absolute continuum intensity is ± 1 percent
at 12, 000°K.
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The column voltage gradient necessary for the solution of the Elenbaas-l-leller

equation was obtained in two ways. For argon, voltage gradients were obtained

by decreasing the inter-electrode spacing by a known distance and determining,

for a constant arc current, the decrease in arc voltage. For a homogeneous

arc column, i.e., electrodes not blanketed in a gas different from that being

investigated, this method give s the voltage gradient to a high degree of precision.

In the case of nitrogen , it is necessary to blanket the electrodes in argon, and

this method cannot be used. Voltage gradients in the nitrogen arc were measured

using the circuit shown in figure 16. In this circuit, which has been used to ad-

vantage by several other investigators, 18-20 the constrictors at each end of the

column of test gas serve as probes. A small amount of current is supplied to

the arc at these constrictors. Although this current is small, it is much larger

than the current drawn by the voltmeter, so that the effect of the contact resist-

ance of the probes, even if it is extremely high, is negligible. Consequently,

the voltmeter reads the true voltage difference across the constrictors. An

electrometer with an impedence of 1014 ohms was used in the determination of

the voltage gradients in both argon and nitrogen.

The electric field associated with each of the arc currents used for argon and

nitrogen is given in the temperature-profile plots, figures 12, 13, 14, and 15.

E. ANALYSIS OF EXPERIMENTAL OBSERVATIONS

1. Methods of Analysis

Solution of the Elenbaas-Heller equation,

1 d (r dT ) (5)
oE 2 + K = 0

r dr _-r - Prad '

for thermal conductivity, K , requires that the radial temperature gradient

be known as a function of radius. In the present program, temperature

gradients have been determined both by graphical analysis and by differ-

entiating analytical curve fits to the experimental temperature distributions.

The method used for curvefitting temperature distributions is de scribed in

appendix B.

In the graphical analysis, the slope of the radial temperature distribution

at a given radius is found by first determining the normal to the curve.

The normal is determined by placing a half-silvered mirror, mounted per-

pendicular to the plane of the paper, on the temperature profile at the point

where the derivative is to be evaluated. The mirror is rotated until the

image of the curve and the curve itself coincide. A line is then drawn along

the face of the mirror at that point. It is then a simple matter to evaluate

the slope of the curve graphically.

-29-



CATHODE

i I
L I

L I I
I | -_-----_.Eso..

j "_L------J 2 * 250 me

[ I

ANODE

t8-5000

Figure 16 CIRCUIT FOR MEASURING VOLTAGE GRADIENTS IN THE NITROGEN ARC COLUMN

' -30-



An estimate of the accuracy of this technique has been obtained by comparing

the analytically and graphically evaluated slopes of a parabola. The mini-

mum error in the graphical technique occurred at slopes in the neighbor-

hood of 1 and was approximately 2 percent. Larger errors occurred at

larger and smaller slopes, rising to 7 percent at a slope of 0.05. To re-

duce the effect of such errors, which appear to be random, a smooth curve

passing through the origin at zero radius is fitted by eye to graphically deter-

mined slopes of the temperature distribution. In view of the accuracy ob-

tained in the case of the parabola, it is estimated that the radial temperature

gradients are accurate to 5 percent or better. The agreement between the

radial temperature gradients determined by graphical analysis and by curve-

fitting the radial temperature distribution is quite good. In most cases the

two methods agree to better than 5 percent.

The thermal conductivity is calculated from the data using three different

methods for solution of the Elenbaas-Heller equation (5}. Two of these

methods are based upon an energy balance applied to a cylindrical control

volume within the arc column. These two energy-balance methods differ

in their techniques for estimating the electrical current through the control

volume, which is responsible for the production of heat in the volume. The

"calculated-current" method estimates this current from the experimental

temperature distribution and theoretical electrical conductivity of the gas,

using Ohm's law. The "measured-current" method, on the other hand, esti-

mates the current through the control volume from the measured total cur-

rent by subtracting an estimate of the current outside the control volume.

Both of these methods provide thermal conductivity as a function of tempera-

ture from the data of each arc run, but these results are more or less de-

pendent upon the assumed theoretical electrical conductivity. In contrast,

the "two-run" method discussed in appendix C yields both thermal and elec-

trical conductivity without the use of assumed values for the electrical

conductivity.

In the calculated-current method, the Klenbaas-Heller equation (5) is inte-

grated once and solved for the thermal conductivity of the gas at the radial

distance r" from the column axis,

r

(E 2 a - Prad ) rdr

0
( K )r" = - (10)

(r dT/dr)r.

This equation is equivalent to the statement that the heat conducted out

across a cylindrical surface of radius r" is equal to the heat generated inside

the surface by Joule heating, less the heat lost from inside the surface by
radiation.
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Since the radial temperature distribution is known, equation (10) determines

the thermal conductivity at the temperature associated with r', if the elec-

trical conductivityo and radiative power loss Prad are known as functions

of ternpe rature.

In the measured-current method, the thermal conductivity is again calcu-

lated essentially from equation (10), but the integral over o in the numerator

is expressed in terms of the total current using Ohrn's law:

I'= 2rrE d0f ordr = 2_E ordr + r" ord , (11)

where R denotes the arc column radius and I the total current. Elimination

of the integralofor from 0 to r" between (10) and (11) gives the thermal

conductivity formula of the measured-current method,

R /E I - 2 rr E j,2/ o rdr - 2 _ Prad rdr

r

(K)r, = - (lZ)

2 rr(r dT/dr) r,

At fairly large value s of r" , where the temperature is relatively low, the

integral over o in (12), which represents the power dissipated at radii larger

than r", becomes small in comparison with the total arc power per unit

length, EI In such regions, {12) is quite insensitive to errors in the as-

sumed electrical conductivity function o (T). Thus, (IZ) is preferable to (I0)

for evaluating thermal conductivity in the outer part of the experimental

temperature distribution. On the other hand, (I0) is preferable to (IZ) at

points relatively near the column axis.

The two-run method, discussed in appendix C, is based on an explicit solu-

tion of equations (5) and (11} for the thermal and electrical conductivities,

K ando. The solution, presented in appendix A, requires knowledge of the

voltage gradients and temperature distributions for two arc runs with dif-

ferent axial temperatures. The advantage of the two-run method over the

two energy-balance methods described above is that it does not call for

a___ knowledge of the electrical conductivity a . The disadvantages are

that it is more sensitive to errors in the data, and that it requires knowledge

of the thermal conductivity at an initial temperature. This second disad-

vantage is not too serious, however, because the initial temperature can be

relatively low, and the thermal conductivity at relatively low temperature s

can be determined by the measured-current energy balance method without

relying heavily on the theoretical electrical conductivity.
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All three of these methods are faulty in that they are based on the energy
equation in the Elenbaas-lqeller for_,_(5}, which assun_esthat the arc colun,n
is optically thin to its own thermal radiation. As shownbelow, this assump-
tion is not valid for the arc column in either argon or nitrogen at atmos-
pheric pressure.

2. Argon Re sults

The three methods outlined above have been employed to analyze the data

obtained from the several arc runs in argon. The amount of energy radiated

from the arc per unit volume in the infrared, visible, and near-ultraviolet

has been determined as a function of temperature, by relating the profile of

measured radiated power to the temperature profile at the same arc condi-

tions. A Perkin-Elmer thermocouple calibrated with an NBS standard lamp

was used for the total radiation detector. This detector is gray from about

2500A to beyond 6 microns, the wavelength at which the sapphire observation

window cuts off. The undetected radiation at wavelengths greater than 6

microns is estimated to be about 15 percent of the total detected radiation.

Figure 17 shows the results obtained for argon, corrected for undetected

radiation in the far-infrared by _mltiplication with the factor 1. 15.

Calculations based upon the absorption cross section measuren_ents by

Sampson Zl indicate that there is a significant a_,_ount of radiation at wave-

lengths below 2500A from the free-bound continuun_ of argon. At 14,000°K

this radiation is about equal to the total measured radiation shown in figure

17. At this temperature, however, the absorption coefficient for the free-

bound transition is 7 cm -l, which corresponds to an e-folding path length

of 1.4 n_m. At lower ten_peratures, the absorption coefficient is consider-

ably larger. Consequently, tI_e ultraviolet radiation is essentially totally

absorbed and then re-radiated, even in the central core of the column.

Under these circun_stances, it is not perJ_issible to include the ultraviolet

radiation in the radiative tern_ of the Elenbaas-Heller equation. In order

to treat the proble_ rigorously, the Elenbaas-He]ler equation should be

refor_lulated to i,< lude nongrc} _ radiative transfer, a difficult problem to

solve in cylindrical coordinates. Unfortu_late]y, the Rosseland approxima-

tion is inapplicable, since the argon also radiates strongly at wavelengths

in the infrared, visible, and near-ultraviolet to which the arc column is

essentially transparent. In the absence of any satisfactory procedure for

including the far-ultraviolet radiation in the analysis of the problem, the

argon data have been treated u_ing the "optically thin" Elenbaas-Heller equa-

tion (5) with a radiative loss tern_ Pra_J based upon the infrared, visible,

and near-ultraviolet data shown in figure 17. In other words, the far-ultra-

violet radiation has been ignored in the analysis of the data, with consequences

which are discussed below.

The electrical conductivity used in the deter_ination of the thermal conduc-

tivity ot argon fro1_ the ca[culated-currer_t and measured-current methods

is shown in figure 18. T_._is ca[cu!atic_ by Yo_ ]7 agrees _-ell with calcula-

tions 1_lade by Cann. 2Z
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The the real conductivity value s obtained by the calculated-current method

using the electrical conductivity of figure 18 and the radiated power given

in figure 17 are represented by the points in figure 19. This figure also

shows Yos's theoretical conductivity and a dashed curve representing the

results of analyzing the data using the measured-current method discussed

above; these results are presented more fully in figure 21. At the higher

temperatures of each arc run, the thermal conductivity from the calculated-

current method exhibits a downward trend. This behavior possibly results

from the difficulty of obtaining accurate derivatives of the temperature pro-

file at positions close to the axis of the arc or from inaccuracy of the Abel
inversion near the axis.

It was e stimated above that the overall uncertainty in the measurement of

the absolute intensity distribution of the arc column is approximately ± 15

percent. At 14, 000°K, the maximum temperature achieved, this gives rise

to a ±2-percent error in temperature. At lower temperatures the error is

much less. Random errors in the voltage gradient are approximately ±2

percent. As indicated above, the radial temperature gradients are estimated

to be accurate to _7 percent near the center line of the temperature profiles
and as accurate as ±2 percent elsewhere. On the basis of these uncertain-

tie s, the expe cte d random error in the thermal conductivity value s range s

from ±8 percent to ±lB percent, the larger error occurring at the higher

temperatures of each profile (near the center line of the profile). To these

errors must be added the unknown systematic errors due to uncertainty in
the electrical conductivity values used and effects of the neglected far-ultra-
violet radiation.

Figure 20 compares the thermal conductivity of argon as measured in this
investigation with the results of Knopp. 3 The data of reference 3 were ob-

tained using a non-segmented constricted arc which was known to be cylin-
drically symmetric. The two sets of data agree to within the limits of ex-

perimental error. The relatively good agreement between the sets of ex-

perimental results shown in figure 20, and the approximate agreement of
these data with theory, indicates that it is possible to obtain reliable meas-

urements of transport phenomena usin_ the segmented constricted arc.

Figure 21 shows values of the thermal conductivity of argon calculated from
the same experimental data (figures 12 and 1B),the same assumed radiative

loss (figure 17), and the same theoretical electrical conductivity function

(figure 18), using the measured-current energy balance method. As dis-

cussed above in part 1 of the present section, this method is similar to the

calculated-current method upon which the results of figure 19 are based,

but differs from it in that the theoretical electrical conductivity a(T) is used

for temperature s lower than that at which thermal conductivity is being
calculated, rather than for higher temperatures. When applied at the lower

temperatures in the experimental distribution, this approach has the ad-

vantage of being less sensitive than the calculated-current method to errors
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in the assumed theoretical electrical conductivity function. In the case of

argon, at the lowest temperature for which the gradient dT/dr is determined

with reasonable accuracy by the experimental data, the correction for cur-

rent flow at larger radii is only 8 to 10 percent of the total current. Since

the theoretical electrical conductivity affects only this relatively small cor-

rection, moderate errors in a {T) cannot have a major effect upon the cal-
culation.

The temperature range shown in figure 21 for each arc current is_that ex-

tending from the third Abel inversion point above the bottom of the experi-

mental distribution up to the temperature at which the correction for current

flow at larger radii is 20 percent of the total current. The points thus

plotted follow a rather clearly defined locus which crosses the curve repre-

senting Yos's theoretical calculations at 9000°K and rises above it for higher

temperatures. At 11,000°K, the thermal conductivity obtained by the

measured-current energy-balance method is about 50 percent higher than

the corresponding theoretical value. As already shown in figure 19, the

results obtained by the measured-current method agree well with those of

the calculated-current method in the temperature range where the two sets

of results overlap.

The results presented in figure Zl have been used to select initial values

of thermal conductivity, K(To}, for use in an analysis of the argon data by
the two-run method. The thermal conductivity values resulting from this

analysis are shown in figure 2Z. The various symbols appearing in this

figure represent the eleven usable* pairwise combinations of the six different

arc currents for which data are available. The filled-in symbols denote

the combinations in which the two arc currents and axial temperatures differ

by the largest factors. For these pairs of runs, random errors should be

amplified least by the differencing procedures inherent in the two-run

method. The open circle, square, triangle, and nabla represent pairs of

runs with smaller differences in arc current, and would be expected to have

intermediate sensitivity to random errors. The plus, times, and asterisk
denote combinations with the smallest relative difference in arc current

and the greatest sensitivity to random errors. The dashed line in figure Z2

is the locus of assumedK(To} values, based upon figure Zl. The sequence

of points representing the K (T) values for each combination of arc currents

always begins on this line. Essentially, the two-run method determines

only the temperature dependence of K(T), not the absolute value.

Figure ZZ shows that the temperature dependence of K(T) as indicated by

the two-run analysis does not agree with that of the K(To) values determined

by the energy-balance method (figure Zl). The points representing the re-
sults of the two-run calculation for each combination of arc runs tend to

follow a horizontal trend (constant thermal conductivity} instead of rising

with increasing temperature.

*In the four remaining combinations, the two temperature distributions do not overlap sufficiently to permit execution of
the two-run analysis.
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Figure 23 shows the electrical conductivity values obtained from the two-

run analysis of the argon data. In the case ofa , the absolute value as well

as the temperature dependence is given by the calculation. The results

from the various combinations of runs agree reasonably well, although there

is considerable scatter because a depends upon the second derivatives of

the temperature distributions. On the average, the values are slightly lower

than the dashed line representing Yos's theoretical calculations of electrical

conductivity for equilibrium argon at one-atmosphere pressure. The approxi-

mate agreement with the theoretical curve is probably fortuitous.

The discrepancies between the results obtained by analyzing the argon data

using the two-run method (figure Z2) and the energy-balance methods (figures

19, 21) are attributed to the neglect of far-ultraviolet radiation and radiative

transfer effects. The emission and reabsorption of argon recombination

radiation provides an additional mechanism, not included in equation (5), for

transporting energy outward through the arc column. The energy-balance

methods, equations (10) and (12), credit this additional transport of energy

to heat conduction, and thus yield effective conductivity value s larger than

the true thermal conductivity. Similarly, the two-run method, also based

on the optically thin Elenbaas-Heller equation (5), yields unrealistic results

when applied to the experimental temperature distributions, which are

actually affected by the radiative transfer processes occurring in the far-
ultraviolet.

Since the transport property results for argon (presented in figures 19, 21,

22, and 23) have been obtained from the experimental data without treating
the effects of far-ultraviolet radiative transfer, these results cannot be

considered definitive. The discrepancies between the experimental and

theoretical values of thermal conductivity may be due, in part or in whole,

to these neglected radiative effects.

3. Nitrogen Re suits

The calculated-current method has been employed to analyze the data from

the nitrogen arc runs for which temperature profiles are shown in figures
14 and 15. Burhorn 23 and Maecker 24 have reported thermal conductivity

data for nitrogen at temperatures up to 15,500°K. In order to compare the

results obtained in this investigation with those of Maecker, the electrical

conductivity assumed by Maecker in his analysis was used. Figure 24 shows

the electrical conductivity of nitrogen as calculated by Maecker and by Yos. 11

The difference between the two is clearly not appreciable for temperatures

between 9,000°K and 15,500°K.

In his work, Maecker considered that the radiative heat loss from nitrogen

could be neglected compared with the energy flux due to thermal conductivity.

Maecker's experimental results are shown in figure 25 along with the
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theoretical thermal conductivity computed by Yes. * Apart from the large

discrepancy between experimental and theoretical values, the most disturb-

ing aspect of the experimental results is the apparent dependence of the

thermal conductivity upon arc current, since the true conductivity is a prop-

erty of the gas and not of the apparatus.

Figure 26 shows the thermal conductivity obtained from the measured tem-

perature profiles and voltage gradients of the present investigation, given

in figures 14 and 15, using the calculated-current method. Values of the

radiative term used in the solution of the Elenbaas-Heller equation are

shown by the solid line in figure 27. These data were measured in the same

manner as the radiation data for argon, and for the same wavelength interval,

i. e., 2500A to 6 microns. The electrical conductivity given by Maecker

was used. It can be seen that the thermal conductivity results exhibit the

same sort of dependence upon arc current as those of Maecker, and indeed

are in good agreement with the values obtained by Maecker.

There is available a considerable amount of information suggesting that the

power radiated from nitrogen at temperatures of 10,000OK to 20,000°K con-

tains a large contribution from the far-ultraviolet at wavelengths below

2500A. Stewart and Pyatt25 have calculated the continuous and discrete

absorption coefficients as functions of temperature, density, and frequency

for nitrogen among other light elements. Their results for a temperature

of 1.5 ev (17, 400°K} and a pressure of about 1 atmosphere show a giant

absorption edge near 1100A. The absorption coefficient for wavelengths

below this edge is about two orders of magnitude higher than that in the

visible region of the spectrum. Correspondingly, nitrogen at typical arc

temperatures in excess of 10,000°K would be expected to show intense

emission at wavelengths less than 1100A. This conclusion is strengthened

by recent experimental data of Allen, Textoris and Wilson, 26 obtained using

a tungsten photoelectric gauge which is most sensitive below ll00A. These

authors found that air at 9,500°K and about 1/4-atm pressure is nearly black

over path lengths of 2 to 5 cm in the wavelength range to which the gauge

re spends d.

The calculations of Stewart and Pyatt are based upon a hydrogenic approxi-

mation for the free-bound oscillator strengths. This approximation is of

questionable accuracy. Burgess and Seaton27 have calculated the free-

bound absorption cross section for nitrogen using the quantum defect method
and a coulombic field. Their results, which are believed to be more ac-

curate than those obtained from the hydrogenic approximation, have been

used to estimate the power radiated by nitrogen in the ultraviolet as a func-

tion of temperature and pressure. In estimating the ultraviolet radiation,

24
*The theoretical values presented by Maecker are in relatively good agreement with his experimental results. However,

these theoretical results did not include the effect of charge exchange, which has subsequently been shown to be of
considerable importance.
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it is important to include line radiation. An estimate of the contribution

from lines was obtained by comparing the values given by Stewart and Pyatt

for continuous and discrete absorption coefficients. These authors predict

that the line radiation is approximately three times greater than continuum

radiation at 1 atm for the temperatures and wavelength interval of interest.

The sum of radiated power calculated from the absolute magnitude of the

far-ultraviolet continuum radiation predicted by Burgess and Seaton, the

relative contribution of the line radiation given by Stewart and Pyatt, and
the experimentally determined infrared, visible, and near-ultraviolet radia-

tion is shown by the dashed curve in figure 27. Using this estimate of radia-

tion with the electrical conductivity and temperature profiles given by

Maecker, 24 the experimental data of Maecker have been reanalyzed by the

calculated-current method, assuming the arc column to be optically thin. *

Figure 28 shows the results obtained by thus including the ultraviolet radia-

tion in the analysis of Maecker's data. Shown in the same figure are the

results reported by Maecker and the theoretical values predicted by Yos.

The change in the experimental results is most dramatic. Not only do the

reanalyzed data agree more closely with the theoretical predictions, but
also the strong, current dependence of the data has been removed.

Figure 29 shows the thermal conductivity data obtained for nitrogen in this

investigation using the radiated power given by the dashed curve of figure

27 and the calculated-current method, again assuming the column to be

optically thin. It will be noted that the current dependence of the data of

figure 29 is negligible. The excellent agreement between the theoretical

and experimental values is probably somewhat fortuitous, particularly in
view of the uncertainty in the calculation of the ultraviolet radiation. Below

9,000°K, the data do not show as good agreement with theory as Maecker's

do, because molecular band structure becomes superimposed upon the con-
tinuum, so that use of continuum radiation measurements to determine tem-

perature become s questionable below this temperature.

The experimental uncertainties in the nitrogen data are approximately the

same as those in the argon data, except for that in the electric field. The

measurements of the voltage gradient in nitrogen exhibited more scatter

than did the measurements in argon. Consequently, it is felt that random

errors in the nitrogen voltage gradients produce an uncertainty of ±4 per-

cent. An error analysis similar to that given for argon then indicates that

random errors in the measurements of thermal conductivity for nitrogen

should range from ± 12 percent to ± 17 percent, the larger value pertaining
to temperatures above 13,000OK and below 9000°K. In addition, the meas-

urements are affected by systematic errors of undetermined magnitude re-

sulting from uncertainties in the theoretical electrical conductivity and the

*The Stewart=Pyatt and Burgess-Seaton calculations indicate that the fully dissociated portion of an arc column in nitrogen
is fairly transparent to the far-ultraviolet radiation. However, this radiation is strongly absorbed in the surrounding
region of molecular nitrogen.
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6

calculated far-ultraviolet radiation, and from possible effects of reabsorp-

tion of the ultraviolet radiation within the arc column.

Because of the uncertainty in the estimated ultraviolet radiation and the

neglect of reabsorption of this radiation within the arc column, the thermal

conductivity values presented in figure 29 cannot be regarded as definitive.

However, it appears highly probable that the discrepancies exhibited in

figures 25 and 26 are largely attributable to neglect of far-ultraviolet radia-

tion in the data analysis. The great importance of this ultraviolet radiation

poses a serious problem in the experimental determination of thermal con-

ductivity. As shown in figure 30, at temperatures approaching 15,000°K

the radiated power including the far-ultraviolet is a substantial fraction of

the total arc power. The power radiated from the high-temperature region

near the axis is an even larger fraction of the power produced by electrical

dissipation in the same region. Thus, near the axis the power carried by

heat conduction is a relatively small difference between two large terms,

and these terms must be determined very precisely to obtain thermal con-

ductivity values of useful accuracy. A possible •solution to this problem

would be to perform the experiments at somewhat reduced pressures, where

the radiative lo,ss would be less important.

F. CONCLUSIONS AND RECOMMENDATIONS

The following are the most important conclusions resulting from the first year

of this program on transport property determinations using wall- stabilize d arcs.

1. An electric arc operating in a constricting tube of segmented design,

such as that used in the investigations reported above, is cylindrically sym-

metric to a sufficiently close approximation that data obtained from it can,

in principle, be analyzed to determine transport properties.

2. The Elenbaas-Heller Equation in its usual "optically thin" form (5) is

not applicable to arc columns at one atmosphere in argon and nitrogen (and

probably in many other gases), because the arc plasma radiates substantial

power at wavelengths in the far-ultraviolet to which at least some portions

of the arc column are relatively opaque. To formulate this process properly,

the energy equation for a cylindrical arc column must be written with the

radiative contributions represented by transfer integrals instead of the

simple volumetric loss term appearing in (5).

3. Therefore, the analysis of wall-stabilized arc data to obtain transport

properties should be based on an energy equation with "transfer" treatment

of the radiation, in place of equation {5). The formulation of such an equa-

tion and its solution for K{T) in terms of a(T) and the experimental quantities

do not appear prohibitively difficult, and should be attempted in the near

future. Once these problems have been solved, the argon and nitrogen
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experimental data reported above should be reanalyzed to obtain the true

the rmal conductivity.

4. In addition, an attempt should be made to carry through an analysis

similar to that presented in appendix A (upon which the two-run method is

based) for an arc column with radiative transfer in the vacuum ultraviolet.

5. One obstacle to definitive analysis of arc data for the transport proper-

ties will be deficiencies in the available information on the optical properties

of gases in the far-ultraviolet. Further theoretical and especially experi-

mental study of the se properties appear s warranted.

6. Since energy transport by emission and reabsorption of far-ultraviolet

radiation is several times as important as heat conduction in the nitrogen

arc at high temperatures, the possible importance of this mechanism in

various technological applications, such as heat shield design for space
vehicles, should be examined.
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Ill. HEITLER - LONDON INTERACTION POTENTIALS AND RESONANT

CHARGE EXCHANGE CROSS SECTIONS FOR

N-N + AND O-O + COLLISIONS

A. INTRODUCTION

The diffusion of atomic nitrogen and oxygen ions with respect to their parent

atoms is important in a number of problems both in connection with the basic

structure of the atmosphere 28-30 and with the performance of high-velocity

re-entry Vehicles in the atmosphere. 31 For example, at temperatures around

I0,000 to 15,000°K, where air is fuilydissociatedandpartially ionized, one

finds that the ionization energy carried by the diffusion of atomic ions can

represent a significant fraction of the total heat transfer in the gas, Z and this

effect must therefore be taken into account in the design of very high speed

re-entry vehicles. Because of the difficulties involved in the experimental

determination of thermal conductivities in this temperature region (see section

I-[), engineering calculations in this regime must rely heavily on theoretical

calculations of the thermal conductivity, based on independently determined values of
the N + and O + diffusion coefficients.

Because of the very large cross sections for resonant charge exchange between

an ion and its parent atom, it is this process which largely determines the rate
of diffusion of the N + andO + ions in most circumstances. 32, 33 A number of

approximate calculations of the N-N + and O-O + charge exchange cross sections

have been given in the literature, Z, 6, 33, 34 and recently the O-O + cross section

has been determined experimentally by a crossed beam technique. 5

Unfortunately, the calculations do not agree well among themselves or with

experiment, differences between the various determinationsofthe cross-sections

ranging from about 50 percent to better than a factor of 3 (see figures 38 and 39.)_

In order to attempt to clear up these discrepancies and provide a more reliable

value for this important quantity, we have therefore undertaken the present,

more detailed calculation of the N-N + andO-O + charge-exchange cross sections,

For the ion energies which are of importance for the study of diffusion in

atmospheric gases (say about O. 1 to I0 ev), it is generally acknowledged that

the semi'classical impact parameter approximation gives a quite accurate

description of the charge exchange process. 32-36 in this approximation, the

motion of the colliding nuclei is treated classically and the probability Pox of

charge exchange during any collision is calculated from the relation

*Note that the interaction potentials and charge exchange cross sections reported in reference fi do not appear co be con-
sistent with each other. It is not clear whic_ of these values was intendedby the authors, and hence both the cross
sections reported in reference 6 and the cross sections calculated from the reported interaction potentials have been
shown in figures 38 and 39.
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AEPex = sin2 =_ dt (13)

where AE= AE(R) is the difference in energy between the symmetric and anti-

symmetric electronic states of the system for a fixed internuclear separation

R, and the integral is evaluated along the classical trajectory of the nuclear

motion. The cross section Qex for charge exchange is then found by integrating

equation ('13) over all collisions having a given energy, according to the classi-

cal formula

oo

Qex = 21r / Pexbdb'

0

(14)

where b is the classical impact parameter for the coIlision. For non-closed-

shell atoms and ionS, equations (I3) and (14) are applied separately to each

possible angular momentum state of the interacting atoms, and the total charge

exchange cross section is then found by averaging the partial cross sections

(! 4) over all angular momentum states. 37

In order to calculate Qex from equations (13) and (14) it is evidently necessary

to know the energy difference AE occuring in equation (13) as a function of R,

and it is the determination of this quantity which ordinarily accounts for the

major part of the workin any actual calculation of Qex • Although equations

(13) and (14) involve the value of AE at all internuclear separations R, a simple

consideration of the nature of the solutions shows that in fact the value of Qex

calculated from (13) and (14) is only sensitive to values of AE in the neighbor-

hood Of the critical impact parameter b C for which the argument / _ (A E/2t_) dt
.,/ -_o

in equation{13) is of the order of #/4.32-37 Thus, for calculations of Qex, it is

only necessary to know the value of AE accurately for separations R in the

neighborhood of this critical value. An approximate integration of equation (13)

shows that the value of AE at the critical separation is approximately (see

equation (I 17b) below)

h v rr = 0.057 ev (15)
(AE) c -- _ _/g b---'c-

1 1 dAE
where - is the logarithmic derivative of AE evaluated at the critical

p AE dr

impact parameter bc , E is the energy of the impinging ion in ev, M is the atomic

weight, and the distances p and b c are measured in A. For reasonable values
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of the parameters p and be, equation (15) gives a critical energy difference

(AE)c = 0.01 ev for ion energies E -- 1 ev. This is a rather small interaction
energy compared to molecular binding energies (_,5 to l0 ev) and thus cor-

responds to a rather large separation between the interacting atom and ion.

For the relatively large internuclear separations of interest in the present

work, the interaction between an atom and ion may be divided essentially into

two components: the exchange force, which arises from the overlapping of the

electronic charge clouds, and the London-vanderWaals polarization force,

which arises from the long-range electrical interactions between the two

particles. 38, 39 Although the polarization force contributes a large part of the

total interaction energy at these separations, it is essentially the same for the

symmetric and antisymmetric states and so makes only a small contribution
to the energy difference AE between the states. 33, 38 Thus the problem of cal-

culating resonant charge exchange cross sections from equations (13) and (14)

reduces essentially to that of obtaining reasonably accurate estimates of the

exchange force between an atom and ion at rather large internuclear separations.

There is very little quantitative information on the exchange force at such sep-

arations available in the literature, 38 and the uncertainty in the values used for

this force has apparently been the major source of error in previous calcula-
tions of Qex. Z,6, 33, 34

In the present work, the interaction energies for the N-N + and O-O + systems

have been calculated by means of the Heitler-London method, 40, 41 in which

the interaction is treated as a perturbation of the isolated atom and ion at

infinite separation. Although this was one of the first methods developed for

the treatment of intermolecular forces, 40 it has been used only rarely in the

subsequent literature, and then in most cases only for rather simple

systems. 38, 41-46 The reason for this neglect is not altogether clear, but it

appears to be mainly because the primary interest has been in obtaining poten-

tials for diatomic molecules near the equilibrium separation, where the Heitler-

London method gives rather poor results. 41 For the very much weaker inter-

actions of interest in the present work, however, one might expect the Heitler-

London method to be considerably better, since it is basically a large R approxi-

mation; and this theoretical expectation is borne out by the limited data presently
available on the exchange force at large internuclear separations. 38 In the

case of H2+, for example, where the exact potentials are known from theory, 47

one finds that the energy difference AE calculated from the simple Heitler-

London treatment differs by only about i0 percent from the exact theoretical

value over the range of separations of interest for the charge exchange problem.

It thus appears that the Heitler-London approach to the calculation of inter-

atomic potentials may offer a promising technique for the study of the exchange

force between atoms at large internuclear separations, and that a re-examlnatlon
of the method in this connection would be desirable•

In the present report, a generalized version of the Heitler- London method is

developed which is applicable to any pair of atoms and/or atomic ions, with
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either open or closed electronic shells, and this method is then applied to cal-

culate all the Heitler-London interaction potentials between the ground-state

atoms and ions for the systems N-N + andO-O +. In this calculation, analytic

Hartree-Fock wave functions from the literature are used for the unperturbed

atom and ion, 48 and the results are carried only to first order in the expansion

parameter e -_R, where _ is one of the orbital exponents in the atomic wavefunc-

tion. The interaction potentials calculated in this way are then substituted into

equations (13) and (14) to obtain the total charge exchange cross sections Qex and

the diffusion cross sections _(1,1) for the N-N + andO-O + systems.

B. UNPERTURBED WAVEFUNCTIONS FOR THE ATOM-ION SYSTEM

1. Atomic Wavefunctions

Before discussing the unperturbed wavefunctions for the interacting system,

let us first review briefly the properties of the Hartree-Fock atomic wave-

functions which will be required in the calculations. * The (restricted)

Hartree-Fock wavefunctions for an isolated atom are in the form of sums

of Slater determinants of one-electron wavefunctions. Each one-electron

function 0i is taken to be a product of a radial wavefunction R, a spherical

harmonic Y, and a spin function X,

_i (r)= Rni li (r) Yli m/i (0, ¢) Xmsi (a).

= u i (r) Xm (a) (16)
s i

where u(_) =- R(r) Y(0,¢) denotes the spatial part of the wavefunction. Each

wavefunction _i is identified by the four quantum numbers, n,l,rn l , and m s,

indicating the principal quantum number, the orbital angular momentum,

the z-component of the orbital angular momentum, and the z-component of

the spin, respectively. Two wavefunctions having the same values of

n and l are said to belong to the same shell; all wavefunctions in the same

shell are assumed to have the same radial part R = Rnl(r ) . In the present

work, it will be assumed that the Rnl (r) are of the form

N.

E nii- 1 __iirRni li (r) = cij r e , (17)

j =0

where the n i. are integers greater than or equal to li+l , N i is an integer,

and the constants cij and _ij are chosen to give a good approximation to the

true Hartree-Fock functions. Values of these constants for the atoms and

ions of interest in thepresent work have been calculated recently by a num-

ber of authors; 48, 50-5"3 for the present work we have used the values of

Clementi given in table I.

*This information is taken mainly from reference 49, and the reader is referred to that work for farther details.
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TABLE I

PARAMETERS IN THE ANALYTIC HARTREE-FOCK WAVEFUNCTIONS

FOR THE GROUND-STATES OF N, N+, O, AND O + (FROM REFERENCE 48)

Species

N

N+

O

O +

i nsi _si

1 1 6.4730

Z 1 I0. 970

3 Z 1. 5937

4 Z 2.6295

5 Z 5. 5731

1 1 6.38207

2 1 10.6536

3 2 1.79832

4 2 2.50239

5 2 6.38917

1 1 7.6063

Z 1 13.224

3 2 1.8792

4 Z 3.1441

5 2 6.3783

1 1 7.47803

2 1 12.6307

3 2 2.07323

4 2 3.10090

5 2 6.37277

Cls i

30. 5402

4.60058

-0. 00263

0. 05204

I. 50537

29.8110

5. 34258

-0. 01337

0. 07309

0. 50995

39.2169

3.95292

0.00073

0.04655

4.19038

38.1978

4.98180

-0.00879

0.09287

2.13681

C2s i np i

-7.01724 Z

-0.72449 2

2.21838 Z

6.64907 Z

-7.87483

-6. 38248 Z

-I. 83256 Z

Z. 78752 Z

6. 01234 Z

-I0. 91376

-9.28733 2

-0.50105 2

3.49860 Z

10.0411 2

-12.3872

-9.69320 2

-0.50363 2

4.53590 2

9.24941 2

-Ii.2772

_Pi C2pi

1.1937

1.7124

3.0112

7.1018

1.44588

1.93941

3.40192

7.79579

1.1536

1.7960

3.4379

7.9070

1.67702

2.23780

3.82447

8,58105

0.534425

2.14388

5.10224

2.09829

0.642802

3.73057

5.00108

1.75366

0. 270232

2.87 509

8. 44957

3. 03487

I, 16971

4. 56034

7. 91973

2,65757
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gives an antisymmetric function of N electrons in which one-electron is in

each of the one-electron states _'i (though of course one cannot say which
electron is in any given state). From the definition, one sees that if two

of the one-electron states are the same, the corresponding Slater deter-
minant (equation 19) will be zero, since it will have two rows the same.

Hence, there cannot be more than one-electron in any state or more than

2(2 l + 1) electrons in any shell. A shell containing the maximum possible
number of electrons is called a closed shell.

Two Slater determinants are said to belong to the same configuration if

they h_tve the same number of electrons in each shell. The configuration

is generally indicated by placing the number of electrons in each shell as

an exponent to the shell symbol; thus ls 2 2s 2 2p3 would indicate a configura-

tion having two electrons in states with n = 1, 1 = 0, two electrons in states
with n= 2, l = 0 and three electrons in states with n= 2, l = 1. The dif-

ferent Slater determinants within a given configuration are then distinguished

by indicating the values of m l and ms for the individual electrons. In this

connection it is, of course, only necessary to specify the values of m I and
m for the electrons in unfilled shells, since the values for the electrons in

cl_sed shells are always the same. Following Slater, we indicate the one-

electron wavefunctions by ml_, where ± indicates the sign of ms,and indi-

cate the Slater determinant formed from given electronic states by enclos-

ing the symbols for those states in parentheses. In order to make the sign

of the determinant definite, we specify that the symbols for the different

states should be written in the same order in which the corresponding wave-
functions occur in the Slater determinant, and that the

closed shells should always be taken in the same order. As an example of
the notation, the Slater determinant belonging to the ls 2 2e2 2 p3 configura-

tion and having the quantum numbers m I = 1 , ms [] 1/2 ; mI ffi -l, m. - 1/2

and m l = 0, ms _- 1/2, respectively, for the three 2p electrons would be
denoted by the symbol ( 1+, - 1+ , 0- ).

The Hartree-Fock wavefunctions for an atom are formed by taking linear

combinations of Slater determinants belonging to a single configuration in

such a way that the resulting wavefunctions are eigen-functions of the

orbital angular momentum and spin operators for the atom as a whole.

These wavefunctions are thus identified by the four quantum numbers

L, S, ML, and MS, indicating the total orbital angular momentum, the total
spin an_uiar momentum, the z-component of the orbital angular momentum,

and the z-component of the spin, respectively. Methods for finding the

proper linear combinations of Slater determinants are described by Slater

in chapter 20 of reference 49; the results for a good many cases are

tabulated in appendix 24 of reference 49. Using Slaterms methods and resultlj

we have calculated table II, which gives the proper Hartree=Fock wave=

functions for the ground-states of atoms and ions having an unfilled p=lhell,

Since closed shells do not affect the results given in table II, we have

specified only the unfilled shells in compiling the table.
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The spherical harmonics Y/m in equation (16) are given by the general
formula

Ylm (0,¢#) = (-1)(m+lml)/2 /(2 / + 1)(/- [m I)!
4_,_7+-lml)i Pz Iml (cos0)eim¢ (18a)

where the Pl Im [(cos0) are the usual associated Legendre functions; in our

work we shall be dealing only with s and p electrons (i. e. , electrons with

l = 0 and 1, respectively), so that Y/m takes on one of the four following

forms:

1

Y00 =

Yll _ sin 0 e i¢

1 '

YIO _/4n %/_ cos 0

1 ./_3 e_i¢ (18b)
YI, I = 4y_nn v 2 sinO

The spin quantum number ms in equation (16) may take on two possible

values, ms = • l/Z, corresponding to the two possible spin states of an

electron, either "up" or "down. "

For a given set of one-electron wavefunctions _bi (i = 1, Z .... N) the Slater

determinant

t#(rl, r2, '",rN) - _ { _i )[

1

_1 (ri) ''" _1 (:N)

_N (_i) ... @N(:N ) (19)
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TABLE II

HARTREE-FOCK WAVEFUNCTIONS FOR THE GROUND STATES OF ATOMS AND IONS HAVING AN UNFILLED p-SI-IELL

Spe cie s

C +

C, N +

N, 0 +

Configuration Ground-State

np I Zp

np 2 3p

np 3 4 S

np 4 3p

np5 Zp

L S

2

1 1

0 _3

2

1 1

M L M S

1 _ (1+)
Z

1 . i (1")
2

0 ! (0 +)
Z

o - ! (o-)
z

i (_1 +)
-1

-1 - I (-i')
Z

1 1

1 0

1 -1

0 1

0 0

0 -1

-1 1

-1 0

-1 -1

0 3

1

o

1
0 -_

3,

0 -_

1 1

1 0

1 -1

0 1

0 0

0 -1

-1 1

-1 0

-1 -1

1 -1
2

1

1 ._

1

o g

0 --
2

1

1

Hartree-Fock Wave function,

(I +, 0 +)

--_ [ (1-, 0 +) + (1 +, 0-) ]

vT

(l-, o-)

(1 +, -I +)

1 { (1", -1 +) + (1 +, -l') ]

(1", -1-)

(o +, -i +)

1
--'-- ( (0", -1 +) + ( 0 +, -I') ]

(0-, -1-)

(I +, 0 +, -I +)

__l [ (1-, 0 +, -1 +) + (1 +, 0-, -1 +) + (1 +, 0 +, -1") ]

JF

_.1 [ (1", 0-, -1 +) + (1-, 0 +, -1") + (1 +, 0-, -1-) ]

(I", 0", -1-)

(1 +, 0 +, -1 +, 1")

I

[ (I +, 0 +, -1-, 1") + (I +, 0-, -I +, I') ]

(I +, 0-, -I-, 1-)

(0 +, -I +, I +, o-)

_-[(0 +, -1 +, 1", 0")+ (0 +, -1-, 1 +, 0-))

(0 +, -1", 1-, 0-)

(-I +, 1 +, 0+, -1-)

__I [ (.i+ ' i+ ' 0", -I-) + _-I +, 1", 0 +, -1") ]

(-1 +, 1-, o-, -l-)

(I +, I-, 0 +, 0", -I +)

(1 +, 1-, 0 +, O-, -1")

(-I +, -I', I +, I', 0 +)

(-I +, -I', I +, I-, 0-)

(0 +, 0-, -I +, -I-, 1 +)

(O+, 0-, -1 +, -1-, 1-)
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Table II is complete in the sense that it gives the proper linear combina-

tions of Slater determinants for all the ground-state wavefunctions of the

listed configurations. In the case of the configurations np 2 , np 5 , and np 4 ;

however, there are also other linear combinations of Slater determinants

of the same configuration which have different values of the quantum

numbers L and S, and which are not listed in table II. These linear com-

binations correspond to low-lying excited states of the atom or ion. For

example, the nitrogen atom has low lying 2D and 2p excited states at Z. 38

and 3.65 ev above the ground level, respectively, which have the same

electronic configuration as the ground-state; whereas, the other excited

states, which correspond to different configurations, all have energies

greater than l0 ev.

2. Unperturbed Wavefunctions for the Ion-Atom Pair

The Hartree-Fock wavefunctions for the isolated atoms and ions which have

been described in the previous section must now be combined to obtain the

unperturbed wavefunctions for the ion-atom system. There are various

ways of choosing these unperturbed functions; however, the calculation of

the interaction energies is greatly simplified if we choose them so as to

satisfy the various symmetries of the system, as described, for example,

by Herzberg. 54

The classification of the wavefunctions according to symmetry and the

conventional designation for each of the symmetry types is also given by

Herzberg. 54 The various symmetry types which result from the interaction

of any pair of atoms or ions in given states of the isolated system can be

found readily by the _vVigner-Witmer rules. 55 The unperturbed wavefunc-

tions corresponding to each of these symmetry types can then be found by

the general procedure to be described below.

Let us designate the two nuclei of the ion-atom system as A and B and

choose the z-axis of the coordinate system along the internuclear axis.

We then form the product wavefunctions _A(MLA, MSA) _B+(MLB , MSB) and
+

_A(MLA, MSA)_B(MLB,MSB), where _and _+designate the ground-state Hartree-

Fock wavefunctions for the neutral atom and ion, respectively, and the sub-

scripts A and B indicate wavefunctions centered on the nuclei A and B,

respectively. In the product _,A_B + it is assumed that _A depends on the

first N electronic coordinates i*1 through _N while _B + depends on the

remaining coordinates -_N 1 through "_2N l' where N is the number of

electrons in the neutral a_om. Similarly, in the product _A+_,_ , _A+ depends

on the first N-I electrons and _B on the remainingN. Thus, t_e sets of

product functions _A_B + and _A +_B are each orthonormal but are not

properly antisymmetrized in the electronic coordinates.
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We now wish to form wavefunctions of the proper symmetry types from the

basic product functions introduced above. First of all, we note that the

product functions _A_bB + and _bA+_B are already eigen-functions of the

z-component of the orbital angular momentum, with the eigen-value 55

ME ' (20)= MLA + MLB

so that it is not necessary to introduce any further symmetrization with

respect to this operator.

The problem of determining the proper eigen-functions for the spin operator

of the system represents a special case of the general problem of deter-

mining the eigen-functions for an arbitary angular momentum vector J

which results from the coupling of two other angular momentum vectors

Jl and J2. This problem has been solved in general, and it is found that

if _b.. represents a simultaneous eigen-function of the operators j2 and Jz

havlJng the eiLgen-values J and M, then it can be represented by a formula
of the form 5_

(M 1 + M2 = M)

_JM = _,_ C (M1, M2; J, M) _ (Jl' M1 ; J2, M2) , (21)

M1 , M2

where the _b(J1, M1 ; J2 , M2) are simultaneous eigen-functions for the com-

ponent vectors and the sum extends only over those values of M 1 and M2

such that M1 4- M2 = M; the coefficients C(M 1 , M2 ; J , M)are known as Clebsch-

Gordan coefficients. A general formula for these coefficients, as well as

tables of values for all cases of interest to us, is given in Slater's book 56

{equation (20-29) and table 20-5) so that equation (21) gives an explicit

formula for the eigen-functions _JM in term of the eigen-functions

¢(J1 ' M1 ; J- ' M2) for the components. Applying this formula to the present

case, we o_tain the eigen-functions for the total electronic spin in the

general form

V2A (S, MS; MLA MLB ) =

(MSA+MSB = MS)

E C (MSA , MSB ; S, MS ) _ A (ML A, MS A ) _bB+ (ML B' MSB)

MS A , MS B

{22a)
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_IB(S)MS;MLA,MLB)=

(Ms A MS )+ MSB=

(MSA ' MSB; (ML A, MS A )C S, MS) _A + OB (ML B' MSB)

MSA' MSB (22b)

where the quantum numbers S and MS indicate, respectively, the total

electronic spin and its z-component for the ion-atom pair; the Clebsch-

Gordan coefficients C(MSA, MSB ; S, MS,) can be evaluated readily in specific

cases from table 20-5 of reference 56.

In order to satisfy the Pauli principle for the combined ion-atom system,

it is now necessary to antisymmetrize equation (22) in all the electronic

coordinates. Remembering that the Hartree-Fock wavefunctions,_ and _,+

for the isolated atoms and ions are simply linear combinations of Slater

determinants involving the electrons within the individual atom or ion, we

see that equation (ZZ) has the form of a sum of terms, each of which is the

product of two Slater determinants times a coefficient which can be deter-

mined from table II and the values of the Clebsch-Gordan coefficients in

equation (22). Now it can be shown without too much difficulty that the

result of antisymmetrizing the product of two Slater determinants which

do not contain any electrons in common is simply to give a new Slater

determinant which is made up by taking all the one-electron wavefunctions

from the two original determinants in the same order in which they

originally occurred, and combining them into one large Slater determinant

involving all the electrons from both the original determinants. Thus,

equation (22) can still be used to describe the antisymmetrized wavefunctions

for the system, if one simply replaces each product of Slater determinants

which occurs in the equation by the corresponding combined Slater deter-

minant for the whole system. We note that, since the one-electron orbitals

on the two centers Aand B are in general not orthogonal, the Slater deter-

minants for the combined system will generally not be properly normalized

and the antisymmetrized wave functions (22a) and (22b) will thus no longer

form orthonormal sets, except insofar as required by their symmetry

prope rtie s.

As the final step in obtaining unperturbed wavefunctions having the proper

symmetry properties, we now take account of the reflection symmetries

of the system. Since in our work we are dealing with systems in which

the two nuclei have the same charge, the wavefunctions will have the g, u

symmetry arising from reflection in a plane perpendicular to the nuclear

axis. 55 The proper unperturbed wavefunctions for the system are thus of

the form 55
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1[ j ,23,ML A ' ML B_g,u = _ _A (S, MS; ML B)'+- _B (S, MS; , MLA)

where the antisymmetrized wavefunctions _A and _B are given by equation

(2Z), and represent, respectively, situations in which atom A is neutral

and B is ionized and in which B is neutral and A is ionized. We note in

passing that it is the splitting AE=_]E-E I between the g and u states given
• . g u

by equation (23) which is responsible for the phenomenon of resonant charge

exchange, and which forms the main objective of the present investigation.

In the event that± ML = 0 and MLA = - MLB _ 0, then it is also necessary to
consider the symmetry arisxng from reflections of the wavefunctions in

a plane containing the internuclear axis. 55 This symmetry then leads to

unperturbed wavefunctions for the system of the form 55

_- = -- -MLA)± _I/g,u(S, MS; - , )g,u _ g,u (S, MS; MLA, MLA MLA

_g'Swhere one must of course use either all or all _u s in evaluating the

equation. The final symmetrization (24)will not be requiredinthe present

work however, since one readily sees from table II and equation {20) that

the case ML = 0, MLA + 0 does not arise for the N-N + and O - O+ systems
considered here.

3. Comparison with Valence Bond Theory

It is of interest to compare the Heitler-London wavefunctions obtained in

the previous section with those given by simple valence bond theory. 57

Both types of wavefunctions are constructed as linear combinations of

Slater determinants which are made up from the one-electron wavefunctions

of the ground-state configurations of the separated atoms, and in both cases

these linear combinations are chosen to have the proper symmetry types

as indicated by the Wigner-Witrner rules. Thus if we consider the set of

all wavefunctions of a given symmetry type which can arise from the

interaction of atoms in the ground-state or in the low-lying excited states

of the same configuration as the ground state, then the valence-bond wave-

functions will all be linear combinations of the Heitler-London wavefunc-

tions, and conversely. However the individual wavefunctions within these

sets are chosen in different ways in the two methods, and in general will

not be the same.

The difference between the two types of wavefunctions is a result of the

way in which electron correlations are treated in the two methods. Thus,

in the Heitler-London method one chooses wavefunctions in which there is

a definite correlation between the spins of the electrons within each atom,

but the correlation between electrons in differentatoms is arbitary; whereas,

in the valence-bond method one choses wavefunctions in which the electrons
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in corresponding orbitals of the two atoms are correlated, but in which

there is no definite correlation between the electrons in a given atom.

There is no reason to expect that these two procedures should yield the

same sets of basis wavefunctions, and in fact one finds that in general they

do not. This point has recently been discussed in detail by Mulliken 58 for

the case of the 5£g+ states of N 2. As another example, we note that the

valence-bond wavefunctions obtained by Knof, et al. , 6 for the sextet states

of the N-N + and O-O + interactions are the same as would be obtained by the

Heitler-London method, while those for the doublet and quartet states are different.

In general we expect that at large internuclear separations, where the inter-

action energy between the atoms is small, the correlations within the indi-

vidual atoms will be dominant and the wavefunctions obtained by the present

method will be appropriate unperturbed functions; while, at small inter-

nuclear separations the correlations between atoms will be dominant and

the valence-bond wavefunctions will be applicable. In general, one might

expect the transition between these two types of wave functions to occur

when the energy associated with the spin correlations between atoms is

comparable to that associated with the correlations within the individual

atoms, i.e., when the interaction energy is comparable to the separa-

tion in energy between the ground-state and the low-lying excited states

of the isolated atoms. Since this latter energy is of the order of 1 or 2 ev,

whereas the interaction energies of interest for the charge exchange

problem are only a few hundredths of an ev (equation 15), it appears that

the Heitler-London wavefunctions of equation (24), which arise from the

ground states of the separated atoms, are the appropriate ones to use

here, and that the interaction with the low-lying excited states of the sam_

configuration, whichis assumed inthe valence-bond wavefunctions will be small.

C. GENERAL EQUATIONS FOR THE INTERACTION ENERGIES

1. The Heitler-London Equations

In the general Heitler-London formulation of molecular theory, the energy

levels Eofthesystemaregivenbythe solutions of the determinantal

equation 59

I Hii - E Sij I = 0
(25)

with the matrix elements S.. and H.. defined by
11 11

IF * d uoSij --- i IF j* r

.+
Hij =- IFi* H IFj dVr

(26)
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Here _i and _j are the unperturbed wavefunctions for the system, and the
Hamiltonian H is .given in atomic units (distance measured in Bohr radii
=--h2/_e 2 = 0. 529 A, energies in atomic units = /_ e4/_ 2 = 27. 2 ev) by

V V V

I 2
H = -: V .... + -- +

ri A ri B rAB rij
i=l i=l i=1 lKi<j<v

(27)

where v is the total number of.electrons, in the system, Z A and Z B are the

nuclear charges in units of e, rA and r B are the position vectors of the two

nuclei, the r i are the position vectors of the electrons, and as usual

rij=-Iri - _j It. For the present work, we have ZA= Z B = Z = N andv = 2N-l,
with N=7 fo nitrogen and N=8 for oxygen. Equation (25) is greatly simplified

if one uses the unperturbed wavefunctions for the system obtained in the

previous section, since the matrix elements (26) between wavefunctions of

different symmetry type will vanish. Thus in the case of N -N+ and O-O +

for example, one finds from the Wigner-Witme.r rules that there is only

one wavefunction of each symmetry type, so that all nondiagonal components

of equation (25) vanish, and it becomes simply

E = Hii/Sii , {28)

Substituting the unperturbed wavefunctions from equation (23) into equation

(26) and defining

OAA---/_FA* O _ A dVr =-f_B* 0 UdB dVr

OAB---f_A* O _FB dVr-=/_FB* O _A dVr
(29)

where the operator O may represent either H or the identity, we find that

Oii = OAA ± OhBand equation (28) reduces further to the form

HAA + HAB
E = (30)

SAA + SAB

2. Simplification of the Matrix Elements

According to the antisymmetrized version of equation (22) the wavefunctions

_A and _B occurring in the matrix elements (29) are linear combinations of

Slater determinants. In the evaluation of the integrals, we may eliminate

the Slater determinants occurring in the second factor in the usual way 60

to reduce equation (29) to a sum over permutations of the form
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[
E /Fx* (rl, r2,...,r2N_l) OFy(I,2,...,2N-1)

dV_
Oxy = (-1) r

(0

(31)

where the subscripts X and Yindicate either A or B and FX(rl,r2,...,r2N_l)

is simply the function which results if we replace each Slater determinant

in _X by the product of its diagonal elements. We note that equation (ZZ)

may also be interpreted as an equation for F x if we simply replace the

wavefunctions _X and _y+ in equation (2Z) by the corresponding functions

fx and fy+ which result when the Slater determinants in ¢'X and _y+ are

replaced by their diagonal elements. The functions fX and fy+ may then

be found directly from table ]I.

It is possible to make a considerable simplification in equation (31) by

noting that, for all cases shown in table II, the orbital part of the wave-

function depends only on the quantum number MU while the spin part

depends only on MS. Thus we may factor fX into orbital and spin parts

fX, M L M S (_,a) = UX, ML (_*) gMs (a) (32)

were a is the spin coordinate and _* is now assumed to include only the

spatial coordinates. Substituting equation (32) into equation (Z2) we obtain

the equation for F in the form

FA(S, Ms; MLA , MLB) = UA, ML A(1,2,..., N) U +B,ML B (N+I,..., 2N-I)

• GS, Ms (1,2,...,N; N+I,...,2N- 1)

F B(S, MS; MLA, MLB) = U+A, MLA(I'2'""N-1) UB,MLB(N .... ,2N-l)

GS, Ms (N,N+ 1.... ,2N- 1; 1,2,...,N- 1)
(33)

where the spin-function G is defined by

GS, MS (1, 2,..., N; N + I,..., 2N - 1)

'_ S, MS) (1,2 ..... N) gi_ls BC (MSA , MSB; gMs A

MSA, MSB
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With the expression (33) for F, we see that equation (31) for the matrix
elements can be factored into orbital and spin parts to give

= U +
OAA (-1)r as(r) ,MLA(rl'''" rN) B, MLB (rN+l .... ' r2N- 1 )

(r)

• O UA, (1,. N) U +
MLA "" B, ML B (N+ 1.... ,2N-I) dr

(35a)

•.., _ MLA
(r) ,] LB B, (rN ..... r2N - 1 )

• O UA, (1, N) U +
MLA "'" B, ML B (N+I,..., 2N- 1) d_'

(35b)

where the sum is over all permutations r of the integers 1 through 2N-1

and the spin dependent factors a s and bS are given by

as(r) =: _ GS, MS (rl' r2 .... rN; _N+ 1 ..... r2N- 1)

spins

GS, MS(l, 2,...,N; N+ 1,..., 2N- 1)

bS(r) = L4 GS'MS (rN' rN +1 ..... r2N- 1; rl ..... rN- 1)

spins

GS, Ms(1,2 ..... N; N+I,..., 2N- 1) (36)

We note that a s and bS cannot depend on MS since the interaction energies

must be independent of the direction of the spin vector.

Equations (34) through (36) furnish explicit equations for the required

matrix elements OAA and OBB in terms of the orbital and spin factors U and

g defined by equation (32). Since these factors can be evaluated directly

from table I.I, we see that it is unnecessary to go through the intermediate

step of actually constructing the unperturbed wavefunctions for the system,

as described in section B above.

-70-



DO

A further important simplification in the calculation of the matrix elements

(35) can be made if we introduce the approximation mentioned in the intro-

duction of considering only the lowest order terms in e-_ R, where R= tAB

is the internuclear separation and _ may be any one of the orbital expon-

ents _i occurring in equation (17). It can be readily shown from the form

of equation (35) that each electron which is exchanged between the nuclei

A and B will give a factor of e -_R in the integrals, so that the approxima-

tion of neglecting higher powers of e -_R in equation (35) implies that we

need only consider permutations in which no more than one electron is

exchanged between the two nuclei. For the matrix elements OAA , we note
that the number of electrons on each nucleus is the same for the initial and

final states, so that the number of electrons exchanged between the nuclei

is always even. Thus, within the present approximation we need only con-

sider permutations r in which all the electrons remain on the same nucleus

in evaluating the matrix elements OAA. Similarly, we see that for the

elements OAB the number of electrons exchanged is always odd and we need

consider only permutations r in which just one electron is exchanged in

evaluating the matrix elements.

It has been pointed out by Slater 61 that the neglect of multiple exchange

terms is a very poor approximation at ordinary internuclear separations0

since these terms are actually proportional to powers of ve -_R, where v

is the total number of electrons in the system. However, the approxima-

tion will of course become better at larger separations, and it appears

likely that it will give at least a reasonable first approximation to the

matrix elements at the very large separations of interest in the present

work. In the present work we have therefore considered only terms of

first order in • -_R, as described in the preceding paragraph, in order to

see the dominant behavior of the potential curves at large R. The contribu-

tions resulting from the higher order terms will be investigated in the

future, and will be included as a correction to the present results if this

appears necessary.

SPIN DEPENDENCE OF THE POTENTIALS FOR N-N+and O-O +

We now wish to evaluate the spin dependent factors aS(0 and bS (r) in equation

(35) for the interactions between N and N + and between O and O + in their ground

states. From the Wigner-Witmer rules we find that the N-N+and O-O+inter -

actions both give rise to states of the following 12 symmetry types;

(37)
2 + 4 + 6_+ 2 4 611u, g_u,g ' _u,g ' u,g' Ilu, g' Ilu, g'

so that the spin quantum number S in equation (35) takes on the three possible

values S = i/2, 3/2, and 5/2. Frorntablellwe can immediately write down the
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values for the spin factors g and g+ in equation (32) for the ground-state species

N, N + O, and O + as follows:

N O + 3/2

gMS(1,2 .... 7) = gMs(1,2 ..... 7) -- a(1)/3(2)a(3)/3(4) hMs (5,6,7)

N + 1

gMs(1,2 .... 6) = a(1)/3(2)a(3)/3(4) hMs(5,6)

O 1

gMS (i, 2 ..... 8) = a(1) /3(2) a(3)/3 (4) a(5)/3(8) hMs (6, 7) (38a)

S

where the factors hMs are defined by

h3/2

3/2 (1,2,3) = a(1) a(2) a(3)

3/2

h_ (1,2,3) -- _[/3(1) a(2) a(3) +a(1) /3(2) a(3) + a(1) a(2) /3(3)]

h3/2 1

-1/2 (1, 2, 3) = --_
[/3(1) /3(2) a(3)+/3(1) a(2) /3(3)+ a(1) /3(2) /3(3)]

3/2
h_3/2 (1, 2, 3) = /3(1) /3 (2) fl(3)

hll (1,2) = a(1) ",(2)

1

h01 (1,2) = --_---[a(1) /3(2)+/3(1) a(2)]

h._ll (1,2) = fl(1) tiC2) (38b)

In these equations a and /3 are the usual one-electron spin functions for ms= + 1/2

and mS = - l/g, respectively. The initial factor a(1) /3(2) a(3) /3(4) , of course,

comes from the closed ls and 2s shells, while the factor for the p shell is

obtained simply by rewriting the formula in table II with the orbital symbols

replaced by the appropriate spin functions a or fl . The quantities a S and b s can

now be calculated explicity from equations (34), (36), and (38), using values of the

Clebsch-Gordan coefficients from reference 56. For the present approxima-

tion, a S only needs to be evaluated for permutations in which no electron is

exchanged between the nuclei A and B and bS for permutations in which just

one electron is exchanged.
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Let us consider first the case in which only the unpaired electrons (i. e. , the

electrons in the argument of h S
MS) are permuted, while the paired electrons are

all held fixed. One sees from equation (38) that in all cases the spin functions

gM are symetric in the spins of the unpaired electrons, and hence the functions

G_efined by equation (34) are also symmetric under any permutations of the

unpaired electrons within one atom. It then follows readily from equation (36)

that, for permutations which involve only the unpaired electrons, the values of

as(Z) and 5s(r) depend only on the number of electrons exchanged between the

atoms. Thus aS and5 S are independent of r for all permutations of interest

here, and, using equation (36), we may write them in terms of a typical permu-

tation as

as(r ) = aS(0) = _ [GsM S (I, 2,.... N; N+I,..., 2N-l)] 2

spins

bS(r) = bs(z) _-

spins

GSM S(N+I,...., 2N-l, N; 1,...,N- 1)

GSMS (1,....,N; N+I,..., 2N- 1)

(39)

It is now a straightforward calculation to evaluate these expressions using

equations (34) and (38) and the usual orthonormality relations for the spin func-

tions a and/_ One finds in this way that

as(O) = 1 for all S

bs(1)

5
1 for S = --

2

2 3
--- for S = --

3 2

1 I

-- _or s - -- (40)
3 2

+. ,

for both the N-N+andO-O interactions.

The analysis becomes more complex when one considers permutations which

involve paired electrons as well as unpaired electrons, but as might be expected

the conclusions remain essentially the same. The details of the analysis for

the case of a general permutation are given in appendix D. From this analysis,

one finds that for a general permutation r in which no electrons are exchanged

between the nuclei, the equation for aS(r) may be reduced to the product of a
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factor which depends only on the permutation r (and not on S), and the spin-

dependent factor aS(0) of equation (39). Similarly, for apermutation r in which

one-electron is exchanged, bs(r) reduces to a function of r only times the spin-
dependent factor bs(1) of equation (39). It thus follows that, in the approxima-

tion in which we neglect multiple exchange, the spin dependence can be completely

factored out of the matrix elements (35), so that the matrix elements for any

spin state can be expressed in terms of the elements for one spin state, S = 5/2

say, and the spin dependent factors aS(0) and SS(1) given by equation (40); i. e.,

OAA(S ) = as(0) OAA(5/2) = OAA (5/2)

OAB(S) = bs(1) OAB(5/2)

Substituing this result in equation (30) and remembering that OAB is of order

e -_R , so that we may expand in powers of OABand neglect higher order terms,

we obtain the expression for the N--N+and O-O+interaction energies in the form

ES, ML = W0(ML) + bs(1) W1(ML) , (41)

where the quantities

W0(ML) = HAA/SAA

and

wI(ML) = ___._1 (HAB _ SAB w0(ML))
SAA (42)

are to be evaluated for the sextet states (i. e. , for S = 5/2), and the spin

dependent factors bs(1) are given by equation (40).

When we compare equation (41) for the N-N+and O-O + potential curves with the

results obtained by Knof, Mason and Vanderslice, 6 we see that the predicted

relationship among the states at large internuclear separations is altogether
different from that found by Knof, et al. There are two main reasons for this

discrepancy. First, the exchange integrals j. of reference 6, which we have

here assumed to be negligible at large internuclear separations, have been

empirically estimated by Knof, et al., to be quite large. These integrals do

not affect the charge-exchange cross section significantly, so that their value

is not really relevent to the main objective of the present work; however, it

appears to us that the experimantal evidence for the values given in reference

6 is quite inconclusive, and that probably these integrals actually drop off

considerably faster at large R than has been estimated by Knof, et al. However,
this is still an open question.
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The second difference between our results and those of reference 6 is that the

valence-bond wavefunctions used in that work give a spin factor bs (1) = 1 in all

cases; whereas, we obtain the values given by equation (40). Thus, the split°

tingbetween the g and u states obtained by Hnof, et al., is independent of spin,

whereas in our results the splitting is considerably greater for the higher spin-

states. This difference is evidently due to the different wavefunctions used in

the two calculations, as discussed in section B. 3 above.

E. REDUCTION OF THE MATRIX ELEMENTS FOR N-N + AND O-O + TO

STANDARD ONE-AND TWO-ELECTRON INTEGRALS

1. The Evaluation of the WavefunctionsforN-N + and 0-0 +

We now turn to the problem of evaluating the integrals over the spatial

coordinates in the matrix elements of equation (35}. We have only con-

sidered the case of the N-N + and O-O+ systems incarrying out these calcula-

tions here; however, the general procedure which we use should also be ap-

plicable to interactions between other pairs of atoms and atomic ions with

only minor modifications.

According to the results of the preceding section, it is only necessary to

evaluate the matrix elements of equation (35) for one spin-state of the sys-

tem. For this purpose, we choose the sextet state S=5/2, MS=5/2 , since
for this case the wavefunctions _h and uJB in equation (22) become especially

simple, and in fact reduce to a single Slater determinant, which can be

written down immediately by reference to Table II and equation (22). In

order to facilitate the evaulation of the matrix elements, it proves to be con-

venient to change the order in which the one=electron wavefunctions occur

in the wavefunctions _A and YB of equation (22), so that the extra orbital on

the atom will always be called _N' where N is again the number of electrons
on the atom (N=Tfor nitrogen and 8 for oxygen). This will at most change

the sign of the quantity wI in equation (41), and since wI enters into the en-

ergy equation with a o. sign, the final formula (41) for the interaction enorgiea

will not be changed. We therefore writethe wavefunctions (22) for the sextet
states in the form

1 1

_A = l_bi(j)[, _B = I_i'(J)[ (43)
%/(2N- I)! _/(2N- 1)1

where the one-electron wavefunctions ¢i and _i are given in table III

In table III we follow the usual convention of designating the 2p orbitals

with m l = 0 by 2a and those with ml= + 1 by 2rr + . The spin state is designated

by the subscript a or _ and the nucleus upon which the wavefunction is cen-

tered by the subscript a or B. The wavefunctions having the superscript

+ are the one-electron wavefunctions for the ion, and those without the

superscript are for the neutral atom.
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2. The Integrals SAA and HAA

For the wavefunctions (43), equation (Z9) for OAA reduces to the simple

form

2; "OAA -- (-1) r _bi (r i) O 99i(i) d v r , (44)

(r) i=l i=l

where the one-electron wavefunctions _bi through _Nare on nucleus A,

_bN+ 1 through _bv are on nucleus B, v -= 2N-l, and for the present approxima-

tion we consider only permutations r which do not interchange any electrons

between the two atoms. Since the one-electron wavefunctions _i (equation

16) within a given atom are assumed to form an orthonormal set, we see

immediately that to this approximation the overlap integral

sA^ = I (45)

To evaluate the matrix element HAA it is convenient to write the Hamiltonian

for the system (equation 27) in the form

H = H A + HB + + H" (46a)

where

N N

1X,' Zz EH A ", - -_- V • - -- +
riA

i--1 i--1 l<i<j <N

I

rij

V 12

..+ 'X ' X z X '
2 V j _ rJ B rij

j_,N+I j;N+I N+l<_i<j<v

are the Hamiltonians of the isolated atom and ion, respectively, and

H* m

Z 2

rAB

N v N v

IE z+EE .,-TZ'IB 'i^
i,*l j,,,N + 1 i-1 j=N+I

(46b)

may be thought of as the perturbation term. In the approximation of

neglecting electron exchange between the atoms,
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V V

(r) i= 1 i= 1

= E 0 + E0+ =_ H 0
(47)

where E0 and EO+ are the Hartree-Fock energies of the isolated atom and

ion, respectively.

The terms in H" in equation (46) each involve at most one-electron ina given

atom, so that any permutation of the electrons within one atom will always

factor in the integral of the form f_bi* (_') _bj(r)dr with i # j , andgive a

this factor is zero because of the orthogonality of the one-electron wave-

functions within each atom. We therefore only need to consider the diagonal

terms in evaluating the matrix element of H" and equation (44) for HAAmay
be written simply as

HAA _ H0 + QO
(48)

where the term

V V

i =1 i=1

-- _'i (1) ¢'i (1) d +
rl B

i=l

¢'i (2) q,i(
[

- 0i (1) Oi (1) d dr 2

r12 " = (49)

may be recognized as simply the electrostatic interaction energy between

the charge distributions on the atom and ion.
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3. Transformed Wavefunctions for the Positive Ion

The calculation of the matrix elements OAB is complicated somewhat by

the fact that the one-electron wavefunctions for the atom and ion are

slightly different (see table I), so that we can no longer use the condition

that _i'(F)_j(-_) d_ = _ij to eliminate terms in the matrix elements aris-

ing from permutations of the electrons within one atom. This difficulty

can be avoided, however, by a simple transformation of the one-electron

wavefunctions @i" In general, we see that if _i (0) represents any set of

one-electron wavefunctions and

@i(t) = _ Cik _bk(O)

k

(50)

represents some linear transformation of these wavefunctions, then the

Slater determinant formed from the _bi(t) is related to that formed from

the _i (0) by the simple formula

Cik _bk(0) (J) - \/v--i- Cik ¢Jk(0) (j) (51)

Thus the Slater determinant of the transformed one-electron wavefunctions

will be the same as that of the originai wavefunctions, except for the constant

multiplying factor I Cik [ .

We now wish to apply the general transformation defined by equation (50)

to generate a new set of one- electron wavefunctions for the ion which will

be orthogonal to the corresponding set for the atom, i.e., will satisfy the

condition

f. +(t)* -. (52)_OiA (_*) _bjA (r) dr = 8ij forl<i<N-1, I<j<N

where the _i; (t) are assumed to be related to the original positive-ion
• q- .

wavefunctlons CkA by a hnear transformation
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N-1

= Cik OkA for 1 <_.i <_ N-1 (53)

k=l

Substituting+equation (53) into equation (52) gives an equation for the co-
efficients Cik in the form

N-1

E + (0)Cik Ski = Bij

k=l

for 1 <i, j <N-I (54)

where

I0)= /¢ +*
Sk kA _jA d_ for l_k_N-1, I_j_N (55)

and we have omitted the case j = N in equation (41) since it is automatically

satisfied for the wavefunctions of table Ill because of their symmetry

properties.

+

Now, since the positive ion wavefunctions _k differ only slightly from the

corresponding atomic wavefunctions _k and since the determinant

kA _'jA d_ = I, it appears reasonable to expect, and this will be

verified later by direct numerical computation, that for the present pro-

blem, the determinant of equation (55)

(0) (56)
D = {Skj [ 4 0 l<_k, j<_N-1

It then follows from equation (54) that the transformation defined by equa-

tions (52) and (53) exists and that in fact the coefficient matrix elk + of, (0),
the transformation is just the inverse of the matrix _ Skj ).

If we now define the transformed wavefunctions _A (t) and "/B (t) as the

result of replacing the positive-ion wavefunctions by the transformed

positive-ion wavefunctions (53) everywhere in equation (43), then it fol-

lows from equation (51) that

_FA(t) i ÷ 1 (57a)= cik lv A = -6- VA
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and similarly

1 _B (57b)

where D is, of course, the quantity defined in equation (56). Introducing

(57) into equation (29), we find that in terms of the transformed wavefunc-

tions _/I t) and _/B (t) the matrix element OAB becomes

OA B = 0 ?
(58)

With this expression for the matrix elements, we see that the desired

orthonormality condition (52) will be satisfied for all permutations within

a given atom, so that the simplifications which resulted from the use of

orthonormal orbitals in the preceding section will also be obtained in

evaluating equation (58).

In our subsequent work the superscript (t) on the transformed wavefunc-

tions will generally be omitted in order to simplify the notation; however

it should be understood that the transformed positive-ion wavefunctions

_bk+(t) are always to be used in place of the original Hartree-Fock wave-
+

functions _bk in evaluating matrix elements of the form O AB.

4. The Integrals SAB and HAB

When the Slater determinants in equation (58) are expanded as before, the

matrix element OAB becomes

OAB = (-1)r H

(r) I = 1

" 1"I¢i" (ri) 0 _bi(i ) -d v r

i=l

(59)

where the sum is to be taken only over permutations r in which just one

electron is exchanged between the two nuclei. From the definition of the

one-electron wavefunctions in table III*, we see that this means that we

consider only those permutations in which N-lof the N electrons 1

through N go into the orbitals ¢1" through ¢ _ _ lwhile the remaining

electrons go into the remaining orbitals ¢N through ¢2N-1"

To evaluate the overlap integral SAB we note that according to equation

(52) any permutation r in which an electron is transferred from one orbital

* As stated in the previous section, the positive ion wavefunctions indicated in table III are of course to be interpreted
here, and throughout this section, as the transformed positive-ion wavefunctions of equation (53).
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to another orbital on the same nucleus will give a vanishing contribution

to the matrix element (59). This implies that the exchanged electron

must occupy the odd orbital _N for both the initial and final states, since

otherwise the electron which was in the odd orbital would have to drop

down into another orbital on the same nucleus; and it further implies that
the electrons which are not exchanged must remain in the same orbitals.

Thus all permutations in equation (59) will vanish except for the diagonal

term, and we obtain simply

SAB -- D2 (60)SNN

where we define in general

_ij = /'¢'i'* ¢_j d_' (61)

We see that the factor SNN in this equation is just the usual overlap inte-
gral which is obtained in the one-electron theory of charge exchange 62

while D2 represents a correction factor to this theory which results from

the readjustment of the remaining electrons in the atom when the exchange
occurs,

We now turn to the evaluation of the matrix element HAB which results

when the Hamiltonian of equation (27) is substitutedinto equation (59). Since

each term in the Hamiltonian depends on at most two electrons, it follows

from equation (52) that any permutation in which more than two electrons

are transferred from one orbital to another orbital on the same atom will

give a vanishing contribution to HAB. Since for the permutations which we are

considering only one electron is transferred from an orbital on one atom to

an orbital on the other atom, we see that altogether no more than three

electrons can be transferred from one orbital to another, and hence only

permutations involving three or fewer electrons give a nonzero contribution

to the matrix element HAB. The only permutations which need to be considered

in evaluating equation (59) are thus the identity permutation, the permuta-

tions (ij) in which two electrons are interchanged, and the permutations

(i, j, k ) in which three electrons are permuted cyclicly.

In carrying out the sum over permutations in equation (59), it is convenient

to divide the permutations into groups according to the orbitals occupied

by the exchanged electron in the initial and final states. For this purpose

we shall designate those permutations in which the exchanged electron

always occupies the odd orbital @N as group I; those in which it occupies
the odd orbital on atom B but not on atom ^ as group II, those in which it

occupies the odd orbital on A but not on B as group II'; and those in which

it does not occupy the odd orbital on either atom as group III. From
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table III we see that the group I permutations correspond to permutations

of the electronic coordinates in equation (59) for which electron N remains

the same, electrons 1 throughN-1 are permuted among themselves and

electrons N+ 1 through 2N-1 are permuted among themselves; the group II

permutations correspond to those in which electrons 1 through N are per-

muted among themselves and electrons N + 1 through 2N - 1 among them-

selves, except that those permutations in which electron N remains the

same are excluded, and the group II permutations correspond to those in

which electrons 1 through N- l are permuted among themselves and

electrons N through 2N- 1 among themselves, except that again the case

where electron N remains the same is excluded; the remaining permuta-

tions in equation (59) which are not included in any of the above groups of

course fall into group ILI. The total matrix element HAB will then be the

sum of contributions from the permutations in each of these groups, as

indicated by the equation

I II II" HI
HAB = HAB + HAB + HAB + HAB (62)

Let us consider first the group III permutations, for which the exchanged

electron is not in the odd orbital _N in either atom. We see that these

permutations must always involve at least three electrons; the electron N

which is initially in the odd orbital _N on nucleus ^ and drops down to

some other orbital on A after the exchange, the electron j which is initially

in an ortibal onB and moves up into the odd orbital _bN after the exchange,

and the exchanged electron i. It then follows from the discussion above

that the only non-vanishing group III permutations are the cyclic permu-

tations N _ i-_ j-, N, with 1 < i < N-landN+l <__ j < 2N-l, and that these

permutations give a non-zero contribution to the matrix element only for

those terms in the Hamiltonian which depend on both electrons N and j .

Thus the total contribution to the matrix element HAB from group III

permutations is

N- 1 2N-1 J'A,P

Jj/ HAB i" * (N) _j

i--1 j--N+I

"* (i) _N'* (J) ._/_1 ¢i(i)_'i (j) _N(N)d_i d';j d_ N

rNj

N -1 2N- 1

=o E E s, ff
i=l j =N+I

1
d_i'* (1) _bN'* (2) _ _N(1) _bj(2) d_ 1 dr2

r12

(63)

where sij is the quantity defined by equation (61).
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For the group II permutations, one sees readily from the discussion

above that the only nonvanishing contributions to HAB come from the

transpositions (Ni) of two electrons and the cyclic permutations

N _ i -, j _ N of three electrons, where i and j lie in the range l_i, j KN-I

and i _ j, and further that these permutations give nonzero con-

tributions only for those terms in the Hamiltonian involving electron N.

The total contribution to HAB from group II permutations thus becomes

II --- D2
HAB

I__ N-X ff ¢i'* (N) ¢N" *(i)

i=l

I_ 1 Z Z r_Nl -.-_- VN2 rn A rNB + _i(i)_n(n)dridr N

N-1 2N - 1

'= j=l(N6j_i)

44) .._

*(N)_I_ *(i)_bj'*(i)l _bi(i)_bN(N)_bj(j)d_ i drN drj +

rjN

N-1 N--I

"X x 'riN

i=l j=l(j_i)

¢i (i) _N (N) Cj (j) d_ i d_ N d_rji

'-' ,)(+= D2 SNi ¢i" ( V12 + -- + CN (1) d*rl +
rlA

ff(_ 1t (t 1 , 1
- SNi ¢i'*( Cj" (2) -- _j(

rl 2
\i--1 j=N+I

_bN(1) d dr 2 +

N-I

Xff"_i (1) ¢N'*(2)_
r12

i= 1

CN(1) _bi(2) dr1 d_)2 +

N-I N-I

__A _ sNi ff c'i'*(1) '/'J"* (2) 1-_r12_bN(1)¢j(2)d_'ldr2

i=I j=l

+ s N _bi'*(1) Cj" (2)_ _bj(1)_N(2) d_)l d (64)
• r12

i=l i=_

where we have made use of equations (52) and (61) to simplify the results.
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There are a number of further simplifications which can be made in

equation (64), when we take account of the explicit form of the wavefunc-

tions _bi and _i" , as given in table IH. Considering first the last two

integrals in equation (64), we note that these integrals contain only wave-

functions centered on nucleus A. General formulas for the evaluation of

this type of integral are given by Slater 63, and one finds from his results

that these integrals will vanish unless the wavefunctions _i" and ¢_N have

the same quantum numbers ms and ml ) and in addition the sum of the

quantum numbers t is even. We see from table HI that this condition

cannot be satisfied for the present case, and hence the last two integrals

in equation (64) vanish. Further, one finds from the results in refer-

_k
once 63 that the matrix elements of V 12 and rl A in the first term of

equation (64) will always vanish for the wavefunctions _i given in table III,

so that equation (64) reduces to the form

AB SNi _i (i ¢_(I) 0N(1) d-_1 +

i=1

N-I

i=l

"$ s $ I

_i (1)¢N (2)_ _N(1)_i(2)d_id-_ 2
r12

(65a)

where we have defined

2N-1

¢(I)- N / _==_ '* 1rlB-- (65b)
_'j (2) -- _j(2) d_ 2 .

r12
j =N+I

As a final simplification of equation (65), we note that the overlap integral

sl] (61) vanishes unless _i" and _j have the same values of the quantum
numbers ml and m s . It thus follows from table III that for H-states

SNi = 0 for all i_ N , and the first term in (65) vanishes identically. This

is not true for Z- states however, so that for the general case both terms

in equation (65) must be retained.

Because of the symmetry between the initial and final states of the system

one finds that the group If' permutations give a contribution to the matrix

element HAB identical to that from the group II permutations, so that we

obtain simply

II" II

HAB = HAB (66)
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The contribution of the group I permutations to the matrix element HAB

can be most conveniently calculated by writing the Hamiltonian (equation 27)

in the form

+ +

H = H A + H B + Hin t + Hex (67a)

where

N-1 N-1

+ IE E z E iH, -- -7 v_ - --+ __
rAi ri j

i= 1 i=1 l<i<j<N-1

2N-1 2N-1

HB =- z - _ +
rBi

i = N+ 1 i = N+ 1 N+ 1 <i<j<2N-1

1

rij

2N-1 N-I N-1 2N-1

Hin t .... + _ (67b)

rAB rAi rB i rij
i = 1 i = 1 j=N+Ii=N+l

and

N-1 2N-I

E1EIHex = -- -_- V N -- + _ +
rNA rNB riN riN

i = 1 i =N+ 1

+ +

Here H A and H B are the Hamiltonians for the positive ion centered

on nuclei A and B, respectively, Hin t is the Hamiltonian for the interac-

tion between these two ions and Hex is the additional contribution to H

due to the exchanged electron,

Let us consider first the contribution to the matrix elements arising from
+

the terms H A and HB in equation (67). From symmetry we see that
the contributions from these two terms must be the same. Since as we

pointed out above group I contains only permutations of electrons 1

through N-1 among themselves and of N+I through 2N-1 among them-

+ factor to giveselves, the matrix elements for H_ and H B
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2N-I

(HX + H_) B (-1)r

(r_I) i = I

2N-I

0i'_ri)(l'_A+ HI_) rl 0i (i)d2N-l-_

i---I

2D2SNN (-1) _i (ri)H+A ¢i (i) dN-I-_

(r) i = 1 i = 1

where the sum is now over all permutations of the integers 1 through N-1.

In view of the orthogonali W relation (52), we see that this term is quite

analogous to the matrix elements obtained in evaluating the Hartree-Fock

energies of atomic systems 64 except that the wavefunctiona ¢q and ¢q"

would be identical in the latter problem. This makes little difference for

the analysis however, and by applying the methods used for atomic sys-

tems one readily finds that

(H_ + H_)IB _= SNND 2H_

= 2 D 2 NN <" v ] + 0i
i--1

(:) dfi +

E f "* ,* ,* J._ki'*(1)Oj (2)- _kj (l)0i (2)]_bi(1)_j(2)d'_ldF2
r12

l<i<j<N-1

(68)

where we have introduced the separation-independent quantity H_ in

equation (68) in analogy with the similar quantity H 0 found in equation (47).

One notes that if the difference between the atomic and ionic wavefunction0

were neglected, then H6 would be simply equal to twice the ground-state

energy E_ of the isolated ion, and Hd- H0 would be just the ionization

energy.

To evaluate the matrix elements of the quantities His t and Hex in

equation (67.) for the group I permutations, we note that each term in the|e

operators contains at most one electron in each of the ranges I _ 1 _ N - 1

and N + 1 < j <_ 2N-1. It then follows from equation (52) that any permutlL-

tion of electrons within either of these ranges will give a lets contribu-

tion to the matrix elements. Thus the only group I permutation
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which gives a nonvanishing contribution to the matrix elements is the

identity permutation, and we obtain the result that

'HAB - _i (1) (1)(1) _i(1) d SNN +

i=l

f' [-'' ] I+ I_/* (1) -:'- V 1 - 2_(1) _N(1) d'_ 1 (69)

where _(1) is defined by equation (65b) and _(A) is the value of ¢_(1) for

rl --

The expressions for the matrix elements given by equations (45), (48),

(60), (62), (63), (65), (66), and (69) of the present section may now be

substituted into equations (41) and (42) to obtain an explicit formula for

the interaction energies of the N-N + and O-O + systems. Taking the zero

of energy equal to the energy H 0 of the atom and ion at infinite separation,
the formula becomes

(MI)

ES,MI = QO + b(sI) W1

2

(I) V 1 _N(1) d'_I +

i=l

SNN

+ 2

N-I

SN I

i=I

(I)¢)O)ON (I)d_'I+
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4'

N-1 2N-1

+E Esiiff
i=l j=N+I

- 2/g,_* (1) _ (1) ¢'N (1) d_ 1 +

* 2 1
(1)_ ( )-- _N(D_,j (2) d_ 1 d_ 2 +

r12

(1)_N (2)--_N(1)¢i(2)d_l d_2 + Q0 (70)
r12

i=l

where N = 7 for nitrogen and 8 for oxygen, b(s1) is given by equation (40),

Q0 by equation (49), D by equations (55) and (56), sij by equation (61), ¢

by equation (65b), H_} by equation (68), and S 0 can be obtained from the
Hartree-Fock calculations for the isolated atoms, 48

The one-electron wavefunctions _: and _b: are defined in table III, where

it is understood that the original _Iartree_-Fock wavefunctions are to be

used for the positive ion in evaluating the terms H0, Q0 ' and D in
equation (70), while the transformed wavefunctions (53) are to be used in

evaluating all the other terms.

F. EVALUATION OF THE BASIC MOLECULAR INTEGRALS

1. Classification of the Basic One- and Two-Electron Inte[rals

Equation (70) for the interaction energy is given in terms of certain inte-

grals over the coordinates of one or two electrons. A detailed examina-

tion of the form of these integrals shows that they are all of one or another

of the following standard types:65

a. One-Center Integrals

1) Overlap integrals, f4_A _jA d _,

2) Kinetic energy integrals, /¢_A v2 OjA d-_
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3) Nuclear attraction integrals, /¢i* A 1
_A CjA a 7J

4) 2-electron integrals, (1)¢;A (2) --
J r12

_kA (I)_tA (2)d _id_2

b. Two-Center Integrals

1) Overlap integrals, f¢_A CjB d ?

[
2) Kinetic energy integrals, J"_l¢.,*_ V2¢jB d-_

3) Nuclear attraction integrals of two types

f¢ 1 d?a) Coulomb integrals, _A _B CjA

b) Resonance integrals, /¢_A
±
rA CjB d_

4) 2-electron integrals of two types

1" 1a) Coulomb integrals, A( ) CjB (2_ _---¢kA(1)_tB(2)drl dr2
q2

for which one electron is always on nucleus A and the other

is always on nucleus B

b) Ionic or hybrid integrals, (1) _jA (2) -- _kA(1) _tB(2) d-_ 1 d_ 2 ,
r12

for which one electron remains always on the same nucleus

while the other electron is exchanged.
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There is also a third type of two-electron integral which does not occur

in our formulas, and which will therefore not need to be considered here.

namely the exchange integral

//_B (1)_A (2)-!-1 CkA(1)_tB(2) d-_1 dF 2 in are
which both electrons exchanged,

rl 2

Specifically, we see from equation (70) and the table of wavefunctions HI

that the first term in the braces in equation (70) consists of a sum of one-

center integrals times a two-center overlap integral, the second term is

a two-center kinetic energy integral, the terms in the second, third, and

fourth lines each consist of a coulomb integral times a two-center overlap

integral, while the terms in the final two lines are hybrid or ionic integrals.

These various tyres of integrals have all been studied extensively in the

literature63, 65-69 and they can all be evaluated in closed form for wave-

functions of the form used here {equations 16 and 171. The evaluation of

each of the integrals is discussed individually below.

2. The Transformed Positive-Ion Wavefunctions and the Electron

Readjustment Integral, DZ

Let us consider first the one-center overlap integrals s_i ) which are de-
--j

fined in equation (55) and are required in calculating the transformed

positive-ion wavefunctions of equation (53). For wavefunctions of the form

given by equations (16) and (17), these integrals can be carried out imme-

diately by using the orthogonality properties of the spherical harmonics

and evaluating the radial integrals in terms of the U-function to obtain

the general formula

oO

Nu N fl

tSlalflBmlamlflSmsarnsfl ___j X

i=1 j=l

caicflj (nai + nflj)!

na'l + n/3j + 1

(Gi + C_j)
(7l)

The values of the s_9)) for nitrogen and oxygen were calculated from this

formula using the wavefunction parameters given in table I, and the results

were then substituted into equations (53) and (54) to obtain the transformed

N + and 0+ wavefunctions given in table IV. Since the only non-zero
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(0)
off-diagonal elements Ski in this case were those between the Is and 2s
wavefunctions of the same spin, itwas in effect only necessary here to

invert a two-by-two matrix in order to determine the transformation coef-

+ in equation (53).ficients cik

The calculated values of the s(O) were also used to eva/uate the determi-

nant D2 which occurs in equation_ (70) and which presumably takes account

of the effects on the interaction potential produced by the readjustment of

the remaining electrons in the system when one electron is transferred
from the atom to the ion. In terms of the non-zero s (0) it was found

that for nitrogen kj '

4 s4 (72a)
D2 = (Sls,ls S2s,2s - Sls,2s s2s, ls) 2p,2p = 0.95884

and for oxygen

4 s6 = 0.9.4316 (72b)
D2 --(Sls'IsS2s'2s - Sls,2sS2s,ls) 2p,2p

Thus, as might have been expected, we see that electron readjustment

has only a relatively small effect on the interaction potentials.

3. The One-Center Integrals

One sees from table IIIthatthe quantity H_, defined by equ&tion (68), con-

tains only wavefunctions centered on a single nucleus, and is thus independ-

ent of the internuclear separation, R. Explicit formulas for the various

integrals occurring in equation (68) in terms of the radial wavefunction|

Rn/(r) are given in Slater's book on atomic theory. 63 Substituting in
equation (68)from table III and equations (13-5), (13-6), (13-18), and (13-19)

of reference 63, we obtain the formula for Hi in the form
/

H_ = 212T(Is) + 2T(2s) + (N-5) T(2p) - N[2V(Is) + 2V(2e) + (N-3) V(2p)] •
\

+ F0 (ll,18) ÷ 2 [2F0(la,2a) - G0(li_2a)] ÷ F0 (2a_Ra)÷

+ (N- 3)12F0(Is,2p)+ 2F0 (2s,2p) I G1 (it,2p) I GI 1- 3

I 1 F2(2P'2P)]1+ a F0 (2p,2p)- "_" (73)

where again N = Z is the nuclear charge, (N-_) is, of courle, the num-

ber of p-electrons on the ion, the coefficient a is 1 _or nitrogen _nd 3

for oxygen, and the radial integrals T, V , F l and G l are defined by the

formulas
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oo

,/T(a) -=-
2

d [R+(r)/rla] d [ Ra(r)Irla] r 21a +2
dr dr

dr

e,o

/o+V(a) =- R a(r) R a(r) rdr

/o/o• +.Jl(a,_; y, _) =_ Ra(rl) R/3(r 1) Ry(r2)Ra(r2)I l (r I, r2) r2 r2 dr1 dr2
1 2

and

I l (r 1,r 2) -= r_/r2/+1 for rI < r2

=-r2//r/+1 for rI >_r 2 (74)

For the radial wavefunctions of equation (17), the one-electron integrals

T(a ) and V(a ) can be readily evaluated by direct integration of the defin-

ing equations, using the same procedure as for the one-center overlap

integrals (equation 71), to give the general formulas

T (a) =

i=l j=l

(nai+ + -2) 1%i c+j n_j

+

(G. + _.) nai + naj + 1
' J

[l_(z= ,)(C=+_j)2 +q_%qj) 2 n+ 2 C+2]x + . - (naj + aj d'ai + nai aj ]
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Na N +

v(")" E E

i=1 i=1

+ +n + _

ca i caj (na i aj 1)!

)(n ai n + )+4+ )(G_ i

(75)

To evaluate the two-electron integrals jl we introduce the auxiliary func-

tion

Kmnl (x,y) =- / f r_ar_ e-Xrl e-Yr2 Ii (rl, r2) drldr2 for m,n> 1+1
0 176)

so that equation (74) for jl becomes

Z E E E
i=l j=l k=l m=l

+ Kn+ +
c_ cfli cy k cg m ai + n/3i' nyk + ngm,

(77)

The K's are then calculated from the formula

Kmnl(x,Y) =
(re+n-1) ! I m_ I

_- 1 +

xy(x+y)m+n- 1
k=l

(m- l-1)! (n+l) !

(m- l-1- k)!(m+l +k)!

n-l-1 i

E (n-l-1)' (m+/)l (___)k+ (n-l- 1-k)!(ra+/+k)l [ for re, n)__/÷1.

k = i _ (78)

Equation (78) can be readily verified by induction on m and n; to do this

equation (76) is integrated directly for the case m = n = 1 + 1 to establish

the base of the induction, and higher values of m and n are then obtained

by differentiation of equations (76) and (78)with respect to x and y.

Equations (75), (77), and (78) were programmed for digital computation

and the results of these programs were used to calculate the value of H 0
from equation (73). As a check, these programs were also used to

calculate the Hartree-Fock energy H 0 of the isolated atoms and ion_, 8
giving agreement to six significant figures with Clementits results.
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The values of H_ calculated from equations (73) through (78) for the
wavefunctions of tables I and IV were

and

H_ = - 107.76970 for nitrogen

H_ = - 148.73342 for oxygen,

or, combining with the values of H 0 from ClementiJs calculation,

and

H_- H 0 = 0. 51918 atomic units = 14, 12 ev for nitrogen

48

(79a)

H i - H 0 = 0. 44860 atomic units = IZ. 20 ev for oxygen. (79b)

As expected, these values are approximately equal to the ionization po-

tentials of the atoms, i.e. 14. 54 ev and 13.6 ev respectively for nitrogen

and oxygen.

4. The Coulomb Integrals

The Coulomb integrals which occur in lines two, three, and four of

equation (70), are all of the general form

.Q (i, k; j, t) _. 1) _bjB (2) (1/r12) _bkA (1) _btB (2) d-_ 1 d-_2 (80)

in which electron 1 remains always on nucleus A and electron 2 always

on nucleus B, It is readily shown 66 that this expression represents the

Coulomb interaction between the electronic charge distributions _iA _kA
$

on nucleus A and _kB _tB on nucleus B. For the wavefunctions given by

equations (16) and (17), it consists simply of a long-range multipole

-2CR
interaction term plus a term in e which arises from the overlap of

the charge distributions in the two atoms. Since the latter term is of the

same order as the multiple electron exchange terms which have been

neglected in the present calculation, we can omit it and consider only the

multipole term in calculating Q, Thus for the present approximation Q

can be expanded in terms of the multipole moments of the charge distri-
* ,

butions _biA _kA and CjB CtB giving the result that
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Q(i, k; j, t)
y_j gmn (i,k; j,t) (m) (n)

= _ms i ms k 8msj ms t R m+n + 1 qik qtj (81a)

m_gl

where

,m, fqafl = Ra(r) R/_(r) r2 +m dr (81b)

0

is proportional to the mth multipole moment of the charge distribution

_ba* ¢f3 and the coefficients gmn depend only on the angular part of the

wavefunctions. For the cases required here, the grnn can be readily evalu-

ated by comparison with the explicit formulas for the Coulomb integrals

which have been calculated by Roothaan for a number of special cases, 66

and in this way we have obtained the values given in table V. The coef-

ficients gmn for other combinations of s and p electrons can be obtained

from the values given in table V by applying the following symmetry rela-

tions, which are readily derived from the defining equations (16), (17),

(80), and (81):

gmn(i,k;j,t ) -_ gmn (k, i; t, i ) = gnm(J,t;i,k ) = gmn(i,,k,;j,,t, ) = gmn(k,i;j,t ) (82a)

_ (82b)
gmn (i, k; j, t) = 0 for mli talk _ m/t- mlj

and are the azimuthal quantum num-
In these equations, m/i , rn/k , m/j m/t

bets of the states i, k, j, and t, respectively, the transformation;:' of the

wavefunctions simply interchanges n + and n-, and the last equality in (82a)

holds only when ¢i and Ck have the same value for the azimuthal quantum

number ml .

The one-electron Coulomb integral

Q0(i,k) --- i; (1) -- CkA(1) d_ 1 (83}
rlB

is simply a special case of equation (80) in which the charge distribution

¢* ¢ on nucleus B is replaced by a point charge at the nuclear center.

The multipole expansion of equation (83) follows immediately when one

notes that all multipoles are zero for a point charge except for the zero-

order term which is just the total charge on the system, equal to one

unit. Thus the expansion (81a) becomes
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TABLE V

*
MULTIPOLE EXPANSION COEFFICIENTS gma FOR THE COULOMB INTEGRAL

Integrat go0

Q (s, s; s, s) 1

Q (s, s; s, o)

Q (s, _, s, o)

Q(s,s;o,a) 1

Q(s,o;a,o)

Q (a, a; u, or) 1

Q (s, s; _+, _+) 1

Q (s, _+; _+, s) _ Q (s, .+; s, _')

Q (s, a; _+, _+)

Q(s, _+; _+, o) ! Q(s;_+; a,_¢-)

Q (o, a; .+, _+) 1

Q (a, _+; .+, o) _ Q (o, _+; a, _-)

L_

Q (_+, _+; _+, _+) _ Q (_+, .+; _-, _-) 1

Q (.+, _-; _--, _+)

_Coefficients not indicated are equal to O.

gO1 goz glO gll g12 g20 g21

1

fr

2

5

2

3

1 2V_"

v_" 5

2 2 24

5 5 25

1

5

l

3

1

5

1
_g

5

1 fr
v_- 5

¢r
5

2 12

5 25

12

25

1 6

5 25

6

25

g22



: _i ¸

E gin0 (i,k; s, s) (m)Q0(i'k) = _ms i ms k R-m_ 1 qik

m

(84)

When equations (81) and (84) are substituted into the expression for the

interaction potentials (equation 70), and the results simplified by the use

of the orthonormality condition (52), we find that lines two, three, and

four of equation (70) reduce to the form

/__ 2 q0 4 q 24 qlh 24 q2
E(Q) = + + + S(2o, 2a) + S(2- +, 2- + )

5 R3 5 R 3 25 _/ 25 R 5

+ [d I S(ls, 2a) + d2 S(2s, 2a)]
+ x/3- R2 5

2
+ [d12 S(ls, ls) + 2d ld 2 S(ls, 2s) + d2 S(2s, 2s)]

3R 3

for ]_ - states,

and

E(Q) (1 1 q0 2 q 12 qi._ 12 q2-_ + S(2= +, 2. +) + S(2e, 2a)

\R 5 R 3 5 R5 25 RS/ 25 R 5

2v_ q

5 R 4
[d 1 S(ls,2a)+ d2S(2s,2a)]

where qo

given by

• qO m

1 [d 2 S(ts, ls)+2d 1 d2 S(ts,2s)+ d/ S(2s, 2s)] for I1 states,

3 R 3

is proportional to the quadrupole moment of the atom and is

0 for nitrogen

(85)

qo
" Y0 (R2p)2

r4 dr for oxygen, (86a)
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q is related to the qu_tdrupole moment of the ionic core and is given by

e$

+ r4
q -- R2p R2p dr for nitrogen

q = 0 for oxygen,

the dipole moments dI and d 2 are given by

+ r5 dr
d 1 = Rls R2p

(86b)

+ r3 dr
d 2 -- R2s R2p (86c)

for both nitrogen and oxygen, and the two-center overlap integrals S(a, fl)

are defined by the relation

(87)

where u =_ R(t) Y(0, 95) is the spatial part of the one-electron wavefunction

_b given by equation (16).

Equation (85) can be further simplified by introducing the new wavefunc-

tions

u s u d 1Ul s + d2 U2s

Z %.- 1 -_si 1
_ CS i f 1 e

i=1

Yoo (0,¢) (88a)

where the coefficients cs are given by
i

Cs i = dl Clsi + d2 C2si (88b)
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Substituting equation (88a) into equation (85), we obtain the final formula

for the Coulomb integrals in the form

1 2 q0 4 q 24 q2 _ 24 q2
E(Q) = +-- -- + _ _ + S(2o',2o') + S(2n +, 2n +)

5 R3 5 R 3 25 R5 ]1 25 R5

+ S(s,2o) + S(s,s) for X-states
+ _ R2 5 3 R 3

E(Q) (I 1 q0 2 q 12 q2./ 12 q2-- + S(2n +, 2rr+) + S(2a, 20)
\, 5 R 3 5 R3 25 R5/ 25 R 5

2x/T q 1
+ S(s, 2a) + S(s, s) for I1 - states (89)

5 R4 3 R 3

For the radial wavefunctions (17), the integral (81b) for the multipole

moments q (_) can be evaluated by the same method used previously for
the one-center overlap integrals (equation 71) to give the general formula

Na NB

qa# --

cai e_j (nai + n/3j + m) !

nai + n3j + m+l
i=1 j--1 (_a i + _j)

(90)

Table VI gives values of the multipole moments (86) for nitrogen and oxygen
calculated from this formula using the wavefunctions of tables I and IV.

Table VII gives the corresponding values of the expansion coefficients Cs.
in equation (88). *

TABLE VI

MULTIPOLE MOMENTS FOR THE N-N+AND O-O+INTERACTIONS

(IN ATOMIC UNITS)

Specie s qo q dl d2

N-N + 0 Z. 18838 0. 12094 i. 28611

O-O + 1.97413 0 0. 10707 I. 11493

TABLE Vli

EXPANSION COEFFICIENTS c,i FOR THE WAVEFUNGTION ¢,,

Species

N-N +

O_O +

%1 %2 Csi %3 %4 el)

-5. 33142 -0. 37537 2. 85277 8. 55776 -9. 94587

-6. 15581 -0. 13540 3. 90076 ii.20007 -13. 36216

-101-



5. The Two-Center Overlap Integrals

Let us now turn to the evaluation of the two-center overlap integrals S(a,/3)

defined by equation (87). Substituting the form for the wavefunctions

given by equations (16) and (17) into equation (87), we obtain

S(a,_) -- 2 _ Cai c_i sn _3 (_a i )
ai a, n3j ' £BjR

i,j

(91)

where the indices a and flindicate the angular dependence of the wavefunctions

(i. e., either s,a , n +, or n-) and the functions Sna ,hI3 represent the values

of the overlap integral (87) for the simple unnormalized Slater wavefunctions

-- r"- 1 o-0 vzm(o,¢) {92}

The elementary overlap integrals Sna ' ra/3 which appear in equation(91)
have been calculated by Roothaan 66 for all combinations of Is, 2s, and 2p

electrons. For the present calculation, it is convenient to write Roothaan's

results in terms of the parameters

Pa = Ca R

8b = _b R

= pa/_b

h = 2/(#2- 1) {93)

With this notation, Roothaan's formulas for the elementary overlap integrals

Sna, m/_ become

Sls, ls{Ca'_b ) - 2 (;_2tt/szb 3 pb ) [_2h + pb] e

1
+ _ h(A+ 2)(/1/_Z3 pa )[2{g.+ 2)+ pa] e-Pa

2

=2
Sls, 2s (£a,_b) 2 (A2 _/£4 pb}[2AC3l+l)_4,_+p2] e Pb +

1 (h+2) 2 (Z]: pa )-1 [-2(g.+2)(1+3h) - (2h+ 1) Pa] e-va
2
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1 (_2/_,4 pb ) [_2R(3R+5)+(2R+3)Pb] e-Pb ÷
S2s, ls (_a' _b ) 2

1
+

2
xO, + 2) (_,/¢4 p_) [2 (x + 2) (3;_+ 5) + 4 (x + 2)p_ + pa2] e-Pa

1 (,_2/_.b5 Pb) [2X(12_2 + 24_. + 5) - 4X(3X + 5)Pb + (2X + 3),_] e-pb +
S2s, 2s (_'a, ¢b ) =

- _.2. (A + 2) 2 ( _'a5 pa )-1 [2 (X + 2) (12A 2 + 24A + 5) + 4 (A + 2) (3A + 1) Pa + (2A + 1) p2 ] e-
Pa

2

Sls, 2a (Ca, _'b ) -- V_(A2/_/_ 4 p2)t6x2o +Pb)-4XPb 2 +oh3] _'Pb +

- _ ,_(X + 2)2 (p/c_ a4 p/) [6 (g. + 2) (1 + pa ) + 2pa2 ] e- Pa

_2_, 2_ ( G, Cb) = v_ (x2/(5 p2) [6x2(_ + 7) (_ + Pb) - 4X(3X+ 5)p2 + (2X+ }) pb3] e- Po ÷

- x/T x.(X+ 2)2 (H _'2 Pa2 ) [6(x + 2) (4,x.÷ 7) (1 + pa) + 2(6g.+ 11) pa2 + 2 P2 ] e- P;i

s27r, 2n (_a, _b ) =- s2n +, 2rr + ((a' (_b) =- s2_-'2_- (_a' (b)

. 3 (g3 _/_b 5 pb3) [24_2(1+Pb )- 12APb 2 + 2p_]e -pb +
2

- _..3 X(X+2)2(#/_5 pa3)[24(A+2)2(l+Pa ) + 12(X+2) p2 +2Pa3]e-Pa
2

s2o, 20" (_a' _b )

d

= - d-'R [R s2n ' 2n ((a' _b )]

3

= -_ (I3 /_/_'b 5 p3)[24X2(2 + 2Pb + pb2)- 2(6A+ 1)Pb3 + 2Pb4]e -Pb +

- ---3 _,()_+2) 2 (/4/('2 P2) [24(_+2) 2 (2+2p a+p2)+2(6_*ll)P' } *2p 41''P.
2
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In the special case Ca = _b the formulas (94a) for the overlap integrals all

become indeterminate, and Roothaan gives special formulas for this case

in the form

Sis, is (C, ¢) = (1/4C3) +p+y p e-P

1 4 p2 1 p3 1 4)(¢,C) : (3/4¢5) +p+_ +. + _ p ,-p
•S2s, 2s 9 9 45

1 2 p2 1 31s2rr,2n(C' C) = (3/4C 5) +P+-5- + 15 p e-P

d

(C, C) -- - Kd---Z--[Rs2a ,2a (C, _)]S2ay 2a

<_ 1 p2 2 p3 + _ p e-P (94b)
= (314C5) i-p--T + _T _5

where, of course, # = Pa = 9b .

One notes that for all cases given in equation (94) the elementary overlap

integrals are of the general form

Sa_(_'a' _b ) " Pa (R) e-_'aR + Pb(R)•-CbR

where Pa and Pb are polynominals in R with coefficients which depend on

the parameters n, l , m , and _of the two wavefunctions. Thus the formula

for S(a, fl) obtained by substituting equation (94) into equation (91) will

consist of a sum of terms each of which is proportional to a polynorninal

- CalR - C/3i a
in R times one of the exponential factors e or e occurring

in the wavefunctions %ba and _ (equations 16 and 17). For the approximation
which we are using here, in which all terms of order e -2_R are neglected,

-_a i R
.it will be consistent to also neglect all terms in e for which the value
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of Ca. is greater than or equal to twice the minimum value of _ai occurring
1

in the expansion. Since only atomic wavefunctions occur in equation (91) ,

we see from table I that there will only be three values of _ai which satisfy

this criterion, namely _Pl' _P2' and _ss, so that only terms in these three

exponentials need be retained in evaluating equation (91).

Using this approximation, we have evaluated the required overlap integrals

S(a, _) for nitrogen and oxygen from equations (91) and (94) and the wave-

function parameters given in tables I and IV. The resulting formulas for

the integrals are given explicitly in Appendix E, and are plotted as a function

of R in figures 31 and 3Z.

6. The Two-Center Kinetic Energy Integral

The two-center kinetic energy integral

1 fiA 2T(a, /3) = - _ V ,tb/3B d_'
(95)

which occurs in the second term of equation (70) can be evaluated in the

same way as the two-center overlap integral of equation (87). Introducing

the elementary kinetic-energy integrals t n a, m/9 between the unnormalized

Slater wavefunctions (92), equation (95) can be expanded in the form

T(a,/_) -- _ cai cj3j tnai a, n/3 j /3

i,j

(_a i • ¢_ j )
(96)

where the tna ' m/_ are again obtained from Roothaan's work.

From equation (70) and table IiI, we see that only the values T(2e, 2o ) and

T(2rt, 2_ ) =- T (2= + , 2- + ) = T(2=- , 2.- ) will be needed in the present calculation,

so that we only require the elementary integrals t2_' 2_ and t2a ' 2a In

the notation of equation (93), these integrals are found to be

= _ 3 (A3 /#_b 3 pb3 )[12A(A+1)(l+Pb )-2(3k+2)/)2 +pb 3]e-pb +
t2rr, 2. (_a' _b ) 2
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d

t2a, 20 (4a, _b ) dR= - _ [R t2n ' 2n (4a, _'b )]

and

3
+ -- A(A+ 2) 2(,u/_2 Pa3) [12(A+2) (A+ 1)(2 +2Pa +pa "_ ) +(6x + 7) pa 3 +pa41e -pa

2

fo_ Q_% {97a}

_ 4 p2 1 3)t2n, 2_r (4, _) = - (3/843) 1 -p- -_- + 1"7- P e-P

t2cr, 2o (if' _)

d
= - --JR (4,4)]

dR t2n, 2n

1,)1 /92 8 p3 + __ p e-P for q=_'b
= - (3/s43) + P - 7", - 1-7- _5

(97b)

Explicit formulas for the kinetic energy integrals T(a, /3 ) have been cal-

culated for nitrogen and oxygen from equations (96) and (97), using the

same approximations as in the case of the overlap integrals S(a, /3). These

formulas are again given in Appendix E and are shown graphically in

figure 31 and 32.

7. The Hybrid Integrals

The final two lines of equation (70) for the interaction potentials contain

hybrid (or ionic) integrals of the general forms

L(a,¥; 8, fl) =- u+; (1) u/9 B (2) -- uy A (1) U3A(2)d}' 1 d_ 2
r12

(98a)

and

L0(&3) _ B (I) _ USA (I) dr 1
rlA

(98b)
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i

in which one electron is exchanged between the two nuclei, while the other

electrons remain fixed. As in the case of the overlap and kinetic energy

integrals, the first step in the evaluation of these integrals is to substitute

the form of the wavefunctions (equations 1 and 2) into equation (98) to obtain

the expansions

i,/

(99)

where as before the functions l and l 0 represent the values of the hybrid

integrals (98) for the unnormalized Slater wavefunctions (9Z). With the

expansion (99), the last two lines of the expression (70) for the interaction

energy take the form

4 4

E(L) _N y:
}--1 l=1

c F(°P) (OPt' _Pi}cpj Pl

5 5 4 4

E EEE (¢,:,
i=l k=,l /=1 i=l

+

Cls k + C2s i c2sk ) Cp/ Cpj

× F/ P) &k' %;' %P
s i nsk

4 4 4 4

Pi cpk l ¢Pj

i=1 k=l l--1 j =1

F(PP) (_P+' CPk' _Pl' CPj}'

(i00)

4-. o

with the F-functions defined for the II-states of the N-N interaction by

F{0P)(G' ¢b) -- 2;%_ 2_- (&' &)

F [{P}{_', C', &, _b} " 2 [21_,,ks, 2=-, 2_ {C, _ °; Q, gb) - Zi,,2_-, k,, 2_-{C ' Q' C', _'b)]
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"i

F(PP>((, ('; G, Cb) --

and for the Z-states by

21l + _(¢;g';ga, gb)+Z ( ' C;G, gb>
2rr , 2n +, 2n-, 2= 20, 2a, 2_-, 2_- C,

12=+ 2 _ 2_+ 2 .. (_. _'; _a, _b) - 12o, 2_-, 20, 2=- (g- g", g_, gb)1 (101a)

F(0P) (Ca, Cb) = 2 l 02or, 20 (Ca' Cb)

F!_ p) (C; C'. Ca, (b) = 2 [2 lis, ks, 2m 20 (¢" C'; Ca, Cb) - /is, 20, ks, 2a (_; Ca, C", Cb) 1

F(PP) (C; 4"; Ca, Cb ) 2[2 (C; _', ga, Cb) 2 " 4"; Ca, ¢b)] (101b)
= 12rt+, 2n +, 2o, 2a - 12rl+, 2o, 2=+, 2o (C'

The oMy change in equation (101) for the O-O + interaction is in the term

F(PP) involving four 2 p-electrons, which for 11-states now becomes

F (pp) (C; C", Ca, Cb) = 2 [/2n+, 2=+, 2,r+ ' 2rr+ (¢; g"- Ca' Cb ) + 12_, 2o, 2=+, 2_ + (_', C", ga' ¢b )

+ 1 - .
2_-,2rr-,2_ +,2= +(C'C ,C a,Cb)] (101c)

and for f-states becomes

F(PP) (C," C", Ca, Cb) = 2 [2 12=+, 2_ +, 2q, 2o (C; ¢", Ca, Cb) + 12o, 20 ,2a, 20 (C', ¢'. Ca, Cb)l ( lO ld)

Expressions for the elementary l-integrals occurring in e_uation (101) have

been given by Roothaan 67 in terms of certain functions CaY_ defined by
the relation

a+/3+y+a+2e + 1 _1_o 711 1 1
CaY/_¢ (Oa, Pb' = (1 pb ) d_ drl e -2 (pa+pb)(-'_(pa-pb),l

× (f+_)a (f__)fi(l+i:_)y(1_f_)3 (f2_ i/ (l-_2)e (IOZ)

Substituting Roothaan's expressions into equation (I01) and simplifying the

results, one obtains the F-functions for the [l-states in the form

F(0P) (Ca, (b) -- 3 1 C0(_ll (Pa'Pb)

2 Cb4
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F{'sP)(/" /'" Ca, Cb)

3 (i ÷ j):
i

2i-+)+ 1 _-(i +j +1) C4
c_ 1 (0a,0p + a[_ ) (G, c;; c., Cb)

• (i + 3) I cOOl _!.sp) ,.

2j+5 _q+4Cbi+_ _-3,1(_,Pb)--. (G; C,,,CR,CP

'F(PP) (C.;, C_. Ca, Cb) " 9 i 27 I C_: (pa, pb ) + G(PP)(_';, _'a; _'a, _:bJ
4 _'5C_ -CO_lll (Oa,Pb) 8 ?7 <2

+
for N. N

(P,,PP + _ o('P) (C;, _2, ,:a, Cb) (los)
2 22

for 0-0 +

where Oa and Pb are again given by equation (93) and we have introduced
the notation

,_= CaR

P2 : (ca+C,-"G')r

I: 2 <_;*c2)

g = C/Cu

c : -7 (C_+Ca)

Also, the G's in equation (103) are defined by

(_p> 3 $3C_-I Foo,
Gll (Ca' Ca; Ca' Cb) 4 (= _ __ LCoI

(104)

3 F oo:
= -g C_"_ ¢_1-1 LC_2_ ool ooi _r:3 oofl+ 2'_'C_I 1 + 2"_2 CO1 + cl!j
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,, . .

[- 8

3

[oo C01 +4_ C n + 2 C

[cO0111 _, 001 001 _3 001"]+ 2_. C_I 1 * 2"_"2 CO1 + _. Cll J

G(2_P) ((a, G; (a, (b) = - "-ff C01 + 4_Cll -_ 2_ 2 C

0211 001 . I _.2 001 001 _lll_P)21(¢;,c.,'"c_,cb>= - ,-g3(?.6 C__: co_ . 1o_'c_1, o_ .Co: +6_.3c:: +2_.4c

[600: oo1 oo: _:]G22(sP) (_a'(a'_'a,(b) = _-8-3 (:5 (b4)-1 C01 _- 9_ Cll _ 6_ 2 C21 + 2_3 C

_2p ,, 3 [5 00l 001 001 001 0017"_ )(_a,_a'_a,_b) = --_ (_'6 _b3)-: C-11 _-10_'C01 +10_ '2 Cll +6"_'3C21 _274C31J

G(pp ) ( , ,, 9 F ' 001 001 2 001 + R3 001q
_'a,¢a, Ca,¢b) =8 (_'7¢2) _C 21 +6_C_11 +4_ C01 Cll_ (105)

with the convention that in all cases C Yo8_ in equation (105) stands for
. cxyS_ . v,

Ca{3 (Pa, Pb )" The corr.espondmg formulas for the X-states can be

obtained from equation (103) simply by making the substitution

oo1 11o (106)
Ca3"------'-" 2Carl

everywhere in equations (103) and (105).

Equation (100) can now be simplified somewhat by summing the terms in

equation (103) in C01 (Pa' Pb) over the indices i andk. Making use of the

normalization condition (equations 5Z and 71 ), one finds that the contribu-

tions from F(sp) and F (pp) just cancel out N-I of the N units of nuclear

charge in equation (100), so that we are left with the integral F (0p) for a

unit nuclear charge. Also, the terms in equation (103) inC(_" a, Pb ) can be

summed over i and I by means of equations (86), (88), and (90), to give

equation (i00) in the form
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t

i

!

I

/
1

/

where for ll-st_tes

4 4

L, -E E
j =1 l=1

001

Cpj Cpl (3/2_) C01 (_pl R, _pj

4 5

(-nsk- 1)

_._s) =_ _._ E E csk Cpj_pjl

j=l k=l

4 4

3

q -2,1

j=l I=I

R)

001

C(_ 3 + riSk), 1

(_pl R, @j R)

5_ 5 4 4

i=1 k=l /=1 j=l

5 5 4 4

E E E
i=1 k=l 1=1 j=1

+ + _ _ c,p) (C,_,¢w 9r CPj)(ci% i Cls k C2s i C2s k) pg Cpj ns ins k

+

+ + ._'(sp) (_'si ' gSk' @1' @j)(Cls i Cls k + C2s i c2sk)Cp/ Cpj _as ins k

(108a)

for both nitrogen and oxygen, and

4 4 4 4

Pi Cpk I cpj

i=l k=l /=1 j=l

4 4 4 4

3 c + Cp

i=1 k=l l=1 j=l

G(PP) (4;i' 4Pk' _Pl' _Pj) for N-N +

(sp) + /" ) for O-O +
G22 (4Pi' _Pk' _PI' _Pj

(108b)

where the G-functions are defined by equation (105). The corresponding

formulas for the E-states are again found by making the substitution (106)

everywhere in equations (105) and(f08).

A simple relationship between the values of E(L)for the E- and II -states can

be obtained by making use of the identity
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001 110
[R car t (CAR, CbR)] = -2 Car l (CAR, Cb R) (109)

dR

which is proved in Appendix F, Comparing this result with equation (106),

we see that the value of E (L) for the E-states is obtained from the value

d 001

for the If' states simply by replacing C:0fl 1 by - -_ (RC a/3 ) wherever it occurs.

From the form of equations {105), {107) and {108) for E (L), one sees that this

substitution is equivalent to the formula

E L)_ d (RE L)) {110}
dR

where E__)and(I Eh-'(L_areof course the values of E (L) {equation I07)for the

_- and n-states respectively. We note that this same relationship (110) was

also obtained previously between the overlap and kinetic energy integrals

for the E- and H-states.

In order to complete the evaluation of the hybrid term E (L) in the energy

formula (70), it is necessary to know the values of the functions C00o I which

occur in equations (i05) and {I08). The evaluation of these functioanl_o has

been discussed at length by Roothaan 67' 68, who gives explicit formulas

for the required C-functions having a > 0 and recurrence relations by which

the remaining functions with a < 0 can be calculated. From his results,

we obtain, after a good deal of algebra, the expressions for the required

C-functions in the following form:

0Ol
C_21 (pa, Pb ) = (2/pb3) [(h 2 - 5A - 30)(1 + pb )- 2(h+6)pb2 - 2Pb3]e -pb +

-(2l_/pa3)(A+2)[(h2-5A-30)A-l +(A-5)Pa-p2]e -pa +

+ (2/_/pb3)[(15 + 15 Pb + 6p2 + Pb3) e-pb F(Pa' Pb )-(15- 15Pb *6pb2-pb 3) epb O(Pa, Pb) I

001
C_ll(Pa, Pb) = (2p,/pb3) k[(2X2-5,k+15)(l+Pb)-2(A-3)pb2+pb3]e -pb +

-(2t_/pa3)(h+2)[(2h2- 5h+15)(#t +2)A-l+(2h2-%+5)Pa+pa2]e -pa +

+(2/1/pb3) [-(15 + 15Pb + 6Pb3 +pb3)e -Pb F(Pa, Pb)+(15 - 15Pb +6pb-pb3)e Pb G(pa, Pb)]

001

C01

001

C11

(pa, Pb ) _ (2A2/pb3)[6k2(1 +pb)-4,kpb2+ pb3]e -pb +

- (4tLh3/pa3) [3(h + 2) (1 + pa ) + pa2]e -Pa

(Pa, Pb ) = (4/zA3/pb3)[12A2(1 +pb )- 6Apb2 +pb 3]e -pb

- (4h3/pb3) [12 (h + 2) 2 (1 + pa ) + 6(h + 2) pa 2 + pa 3 ] e -pa
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001
C21 (Pa'Pb)= (4AS/Pb3)[12A2(5A+9)(l+pb)-6A(4A+7)Pb2+(3A+5)p#]e-Pb +

- (4/_A4/pa3)[12(A_2)(5A+9)(1+pa) +6(6A+ll)pa2+9Pa 3 + pa4/(A + 2)]e -pa

001
C31 (Pa, Pb) = I(12#A4/pb3)[60A2(2A+3)(I+Pb)-8A(5A+7)pb2+(4A+5)pb3] e-pb

- (4A4/pa3) [180(A + 2) 2 (2A + 3) (1 + Pa) + 12(2t + 2) (20)_ + 31)Pa 2

+ 3(24A + 43)Pa 3 + 12Pa 4 + paS/(h + 2)]e -pa (ilia)

where

,F (Pa' Pb) Ei(-pa _"pb) + In {lllb)

G(Pa, Pb) = Ei(-pa- Pb )

El(x) is the usual exponential integral, and we have again used the notation

of equation (93).

In the limiting case of Pa = Pb' the equations (Ilia) become indeterminate,

so that one needs a special formula for the G-functions in this case. Taking

the limit as Pa _ Pb ' the formulas in this special case are found to be

cOO11 (p,p) = (1/p 3)[-(60P+30p 2 +7p 3)+2(15 +lSp+6p 2+p3)(y +ln2p) +

- 2(15- 15p + 6p 2-p 3 )e 2p Ei(-2p)]e-P

001 [(60 23p3 2 4)
C_11 (p,p) = (1/p 3) p+30p 2 + _ +3 _P

+ 2(15- 15p+6t92-/93 )e2P Ei(-2p) 1 e-P

001 (._ 1 1 2)CO1 (P'P) = + --2 p +-_ P e-P

- 2(15 + 15p+6p 2 +p3)(y+ln 2p) +

c11 (p,p): 1+p+_ + I"-'_"P _-P

001 5 11 p2 4 p3 + _ p e-P
c2_ (P' P) = + T p ÷ -TT * 1-T 30
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001 1, 72 3 134C31 (p,p) = -- ÷ _p + + + _ + p e-P (111c)
2 2 70 105

where y = 0.577Z157 is Euler's constant.

Equations (I05), (107), (t08), (110), and (111) provide an explicit formula

for the contribution E (L) of the hybrid integrals to the interaction potentials

(70). Examining these equations, we see that the first term in equation

(107) will be a sum of exponentials times polynominals in R, of the same

form as we found previously for the overlap and kinetic-energy integrals.

The second and third terms will also be of this form, but in addition will

contain a term involving exponential integrals and logarithms, as indicated

in equations (lllb) and (lllc). Finally, in the approximation of neglecting

multiple e!eetron exchange which we are using here, we note that the last

three terms:in equation (107) can be simplified by neglecting terms of order

e -pa Since the exponential integrals in equation (l 1 l) are of this same

order, they can also be neglected here, and the final terms in equation

(107} thus reduce again to a sum of exponentials times polynominals in R.

Appendix E gives the final formulas used in the calculation of E(L) for the

N - N + andO-O + systems. The formulas for the H-states were obtained

by evaluating the constants in equations (I05), (I07), (I08), and (III) for the

N - N + andO-O + wavefunctions given in tables I and IV, using a specially

written digital computer program to perform the multiple sums occurring

in equation (108). The formulas for the E-states were then obtained by

direct differentiation of the corresponding H-state formulas, according to

equation (110 ).

G. THE N - N + AND O-O +INTERACTION POTENTIALS

In terms of the various molecular integrals defined in the previous section,

equation (70) for the N-N + and O-O+interaction potentials can be written in

the form':"

ES, MI = + bS D 2 {(H 6 - H0) S(2/r, 2n)+ T(2n, 2n) + E (Q) + E(L) } for [1-states

= 4- bS D 2 [(H 0" - H0) S(2cr, 2o ) + T(2o, 20) + E (Q) + E (L) } for X-states (112)

where bS is given for N-N + and O-O+by equation (40), D 2 by equation (7Z),

H 0 H 0 by equation (79b), E(Q) by equation (89) and table VI, and the integrals

S, T, and E(LTare given in Appendix E. Substituting all of these values into

equation (I12) we obtain the formulas for the interaction potentials in the

relatively simple form

*We have omitted the Coulomb term + QO in equation (112), since it does not affect the calculated energy difference AE

between the symmetric and antisymmetric states.
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ESI ] (N- N _)

ES, _ (N - N + )

ESII(O-O+)

- & bS 1[-0.00185726 R 3 + 0.0095802 R 2 + 0.052137 R - 12.6978 + 165.603 R -1

- 667.901 R -2 + 512.832 R -3 - 399.45 R -4 + 4481.2 R -5 + 5934 R -6

+ 5480 R "7 + 4600 R -8 1.60632 K N-N +- (1.1937, R)] e-l'! 937R

+ [-0.0711613 R 3 + 0.093474 R 2 + 0.368215 R + 32.0694 + 552.170 R -1

+ 3265.71 R -2 - 9787.06 R -3 - 557011.8 R -4 - 9646086 R -5

_ N-N + R)] e-1.7124 R- 5637462 R -6 - 7750 R -7 - 4500 R -8 9.24393 Krt (1.7124,

+ [0.0272021 R + 0.085343 - 7.06521 R -1 - 2748.203 R -2 + 9302.080 R -3

- 55(Y549:1 R -4 + 8970148 R -5 + 5628504 R -6

2.73535 K N-N+ (1.5937, R)] e -1"5937R }

= ± bS {[-0.00221703 R 4 + 0.0188652 R 3 + 0.0238864 R 2 - 15.3564 R + 213.320

- 743.754 R -1 - 860.183 R -2 + 4968.22 R -3 + 4164.32 R -4 + 13135.3 R -5

+ 15364 R -6 + 10960 R -7 + 9200 R -8 - 1.60632 Ko N-N+ (1.1937, R)]e -1"1937 R

+[-0.121856 R 4 + 0.444711 R 3 + 0.274959 R 2 + 54.2605 R + 931.795

- 2535.48 R -1 - 418735.4 R -2 - 7366740 R -3 - 5407925 R -4 - 19297960 R -5

- 11278310 R -6 - 15500 R -7 - 9000 R -8 - 9.24393 K N-N+ (1.7124, R)]e -1"7124 R

+ [0.0544040 R - 16.5395 + 4023.903 R -1 - 424848.1 R -2 + 6850237 R -3

+ 3185553 R -4 + 17940241 R -5 + 11256974 R -6

4 2.7353 Ka N-N+ (1.5937, R)]e -1"5937R }

-- + b S {[-0.00056130 R 3 + 0.0016559 R 2 + 0.0122990 R - 5.60514 + 50.2344 R -1

- 171.5977 R-2 + 72.0091 R -3 + 170.3118 R -4 - 65.2992 R -5 - 56.6047 R-6]e -1"1536R

+ [-0.140709 R 3 + 0.131761 R 2 + 0.552823 R - 45.99086 + 926.7200 R -1

- 9925.986 R-2 - 5725.950 R -3 - 103.570 R -4 + 96.620R -5 + 53,7973 R -6] • -1'7960 R

+ [0.0424269R + 0.112885 + 23.44026R -I + 10446,067R -2

+ 5546.266R -3 + 39.7800R -4 + 3,67905 Ktt O-O+ (1.8792, R)]e -1'8792 R J
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ES._(O-O+) = +_ b S[[-0.00064753 R4 +0.0041553 R 3 +0.00663520 R 2- 6.50061R+63.5356

- 197.6218 R -1 - 68.5730 R -2 + 211.201 R-3 + 549.519 R -4 + 261.198R -5

+ 226.419 R-6]e -[ .1536R

i . -i: = '.

+ [-0.2527i3 R4 + 0.79947 R 3 + 0.476738 R 2 - 84.7652 R + 1718.5486

+ 23102.954 R -1 - 2924518.2 R -2 + 68472725 R -3 + 38130946R -4

- 386.480R -5 - 215.190 R-6]e -1"7960R

+ [0.0848538R + 43.82317 - 20335.954R -1 - 2904737.1 R -2

- 71645814 R -3 - 38131522 R -4+ 3.67905 K2-O+ (1.8792, R)] e -1"8792 RI

(113)

where all quantities are in atomic units and the functions K n and K o are given by

4

Krt (_', R) = --'-"_7 Cp!. [F n (/'R, R) + Frt (_'R, R)]

j = 1 Cp} /'PJ - ¢pj

Fn(x,y) = + +- + E(x,y)

y2 y

4

E Cpj R) + Fo (_R, R)]

K a (5, R) = _3j [Fa(£R' _Pj - £Pj
j=l

F o (x, y) = 30 30 15+ + -- + 5 + y e x- y E(x,y)

y2 y

E(x,y) = Ei(-x+y) for x_g y

= ln(x+y) for x= y (lt4)
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where Ei (x) is the usual exponential integral, as defined for example by

Roothaan, 67 and la is the natural logarithm. The parameters cpj and _pj in

equation (114) of course depend on the species considered, and are given for

nitrogen and oxygen in table I.

The potentiM energy curves calculated from equation (I13) for the 2E and 211 states

of N2 + andO2+ have been plotted in figures 35 and 36. The curves for the 4Eand

411 states are of course just twice the plotted points, and the curves for the 6E and

6II states three times the plotted points.

One sees that in the range of energies which are important for charge exchange,

about 10 -2 ev, the calculated curves can be fitted very well (within about 5

percent) by a simple exponential function, Ae -aR , as shown by the solid lines

in the figures. With this curvefit we obtain the following formulas for the po-

tential curves at large internuclear separations R: _

For N-N +

2 +

E = + 40.8 e-l'778R ev for the '_g,u states

= + 81.5 e -1"778R ev for the 4X + states
g_u

= + 122.3 e -1"778R ev for the 6X;u states

= + 15.5 e -2"026R ev for the 21-1g, u states

= + 30.9 e -2"026R ev for the 4I]g,u states

= + 46.4 e -2"026R ev for the 6I]g,u states

and, for O-O +

(l15a)

2 +
E = + 33.2 e -1"811R ev for the _g,u states

= + 66.5 e -1"811R ev for the 4E +
- g,u states

62;, u= +_ 99.7 e -l'811R ev for the states

= + 12.2 e -2"055R ev for the 2 [lg, u states

= + 24.5 e -2"055R ev for the 4Ilg, u states

= + 36.7 e -2"055R ev for the 6[lg, u states (11 5b)

o

where R is measured in A.

*The actual potential curves at large separation of course contain a polarization term which has not been included in the
present calculations, and which must therefore be added to equation (115) to obtain the true interaction potential at larse
internuclear separations. As discussed in section lll.A however, ,it is expected that equation (115) should nevertheless
sire approximately correct values for the enersy difference AE m I Eli -- Eu_ between the symraettic and antisymmetric states.
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An interesting approximate relationship between the potentials for the E and

If-states may be obtained from our results, by noting that the condition

d
EX (R Eil) (1 16)

dR

is satisfied exactly by all terms in equation (112) for the interaction potentials,

except for the Coulomb term E (Q) (equation 89). Since E (Q) turns out to be

comparatively small, and in addition satisfies equation (I 16) approximately, one

might except that (i 16) would also be approximately satisfied by the total inter-

action potential (i12). For an exponential potential E = Ae -aR this implies that

the ratio (Ex/EH) _ (aR-I), in good agreement with the numerical results shown

in figures 35 and 36.

Estimates of the N-N + and O-O+ interaction potentials at large internuclear

separations have been made recently by Knof, Mason, and Vanderslice 6, by

making use of approximate valence-bond arguments to extrapolate the observed

spectroscopic potential curves to larger internuclear separations. The most

direct comparison between their results and ours is provided by the predicted

splitting AE -_.s]E - Eul between the symmetric and antisymmetric states. This
comparison " s_own in figures 35 and 36. We see that in the region of small

separations, where the results of Knof, et al, are based directly on experi-

mental data, the agreement with the present results is fairly good, but that the

deviation between the two calculations becomes progressively greater at larger

separations, so that, at the internuclear distances of importance for charge

exchange, our results lie more than an order of magnitude above those of Knof,

et al. Since our calculations are expected to be most accurate at larger inter-

nuclear separations, this would appear to indicate that the results of Knof,
et al, are too low at large values of R.

It is also of interest to compare the ratio of the energy splittings for the

E- and H-states calculated by Knof, et al, using Slater orbitals, with the

approximate relationship (I16) obtained in the present calculation. One sees

from figures 35 and 36 that the ratio of the splittings obtained by Knof for O-O +

is in reasonable agreement with equation (I16), but that that obtained for N-N +

is not. Since one would not expect the relationship (116) between the X and

llstates to be greatly affected by the different wavefunctions used in the cal-

culations, the observed difference for N-N + is rather surprising and would

appear to indicate some inconsistency between the two calculations.

l

Figure 35 and 36 also show an approximate value of _-_E for the N-N + and

O-O+interactions calculated from a simple one-electron theory proposed by

Rapp and Francis, 34 in which the potentials are given as a function of the

ionization energy only. Since this theory assumes spherical symmetry, it

of course gives only a single value of AE for each interaction, representing
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some sort of an average over the six values which would be obtained in a correct

treatment. From figures 35 and 36, we see that the potentials of Rapp and

Francis have approximately the same slope as ours, but are perhaps about a

factor of five higher.

In figures 35 and 36 we have also plotted the observed splitting between the

2£ and 211 states of NZ+ and O2+ at small internuclear separations, as obtained

from spectroscopic data. 70 Our calculations are not expected to be good at

these small values of R; however, if our results are correct, the observed

spectroscopic curves should merge into our results at larger internuclear

separations. One sees that this is readily possible in the case of the 2Il states,

but that in the case of the N-N + 2£ states the observed curve would have to

make a distinct bend in order to merge into our results at largeR. This type

of behavior might well be accounted for by interactions between the observed

B2y.: and C 2_: states;70 however, it does not appear possible to reach any

definite conclusions on this point on the basis of presently available data.

In summary, our calculated interaction potentials appear to be reasonable on

the basis of presently available evidence, but the data is too limited to permit

definite conclusions to be reached as to their accuracy.

H. CHARGE EXCHANGE AND DIFFUSION CROSS SECTIONS FOR N + IN N

AND O + IN O

The N-N + andO-O + interaction potentials calculated in the previous section

(equation 115) can now be used in equations (13) and (14) to calculate the

resonant charge-exchange cross sections QexfOr these interactions. In these

calculations we have made use of the simplified analysis given in reference 6,

in which polarization is neglected and the atoms are assumed to move in straight-

line trajectories. For an exponential potential difference AE = Ae -aR, reference 6

gives an asymptotic formula for the charge-exchange cross section in the param-

etric form 71, 7Z

1 n b 2 + bc + 1 +
%" = -7 1G_2 2&_

(l17a)

2bc/ 1/2 -abc (l17b)• v = 2A _ e
\ rta l

where b c is the critical impact parameter introduced in equation (15).

37 shows a plot of

Figure

a _ v,rsu, 10gl0 [(2_/_ A)/(_- a'_ v)] ,
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as calculated from equation (117); one sees that the plotted points can be fit

very well by the straight line

_ = 1.48 + 3.09 iog10 [(2_ A)/(V-_a_] fo_ 7<_=/Qex <_14 (1 lSa)

or evaluating the constants,

a Q_/_ex = 24.30 + 3.09 log10 (A/a) - 3.09 log10 v (1 18b)

with v in cm/sec, h in ev and a in 1 Substituting the values of Aand a

from equation (115) into equation (118b) and averaging over the different states

as described in reference 6, we obtain the desired charge-exchange cross sec-

tions in the form

o

Qex = (15.3 - 1.60 lOgl0 v) 2 A 2

Qex

o

= (6.4 - 0.80 lOgl0 E) 2 A2 for N - N +

o

= (14.9- 1.57 log10 v) 2 A 2

o

= (6.2 -0,79 lOgl0 E) 2 A2 for O-O +
(119)

where Eis the kinetic energy of the impinging ion in electron volts (in a coordin-

ate system in which the atom is stationary).

The lower limit of validity of equation (119) is determined by the energy at which

deviations from a straight-line trajectory become important in evaluating the in-

tegral in equation (13), while the upper limit is determined by the energy at which

the error in the calculated Heitler-London interaction potentials (equation 115)

begins to become significant. It is difficult to estimate these limits with any cer-

tainty; however, from figures 35 and 36 and equation (15) it appears that equation

(119) should be most accurate in the range of energies 0. 1 ev _< E _< 100 ev, but

that extrapolation up to energies of perhaps 104evor more should be possible with-

out too much loss of accuracy.

The values of Qexcalculated from equation (119) are compared with other avail-

able data on these cross sections in figures 38 and 39. One sees that the various

theoretical estimates of these cross sections are quite scattered, as would be

expected from the potentials shown in figures 35 and 36 , and that our results

do not agree well with any of them. The only experimental data available on

these cross sections is a recent crossed-beam measurement by Stebbings, et al 5

of theO-O+charge-exchange cross section for energies between 40 and 10_4 ev.

The extrapolation of this data to lower energies is shown by the dashed line in

figure 39, with the estimated experimental error of ± Z5% indicated by the

vertical error bar. The good agreement shown in figure 39 between our results

and this measurement is very encouaging; however agreement in a single case
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[

could of course be accidental, and hence one should probably regard the charge-

exchange cross sections calculated in the present work (equation I19) as some-

what tentative, until such time as a more extensive test of the theory can be

obtained.

The impor'canf quantity for the determination of the transport properties of

high tem.peratur¢ gasds is the collision integral for diffusion _(I,I) , which is,,

here d_fin_ '9'ii_l_a_,itwold be equal to .a2 for rigid spheres of diamer -.

At high.temperature's, the _dlffusion cross section is completely dominated by

the charge-exchange effect and is equal to 2Qe x,33, 71 so that the collision

integral for diffusion becomes

_(I,I) = (k T)-3
f0 o°

Qex E2 exp (-E/kT) dE (120)

where k is Boltzmann's constant and Tis the absolute temperature.

integral is easily evaluated for Qex given by equation (119) to yield

o

_(1,1) = 2(9.1 - 0.80 lOgl0 T) 2 A 2
N_N +

This

o

_(1, 1) --- 2(8.8 -- 0.79 log10 T) 2 A 2
O - O +

for Tin °K. These cross sections are plotted in figure 40,

corresponding quantities given by Knof, et al. 6

along with the

(iZl)

Figure 40 also shows the effect of the polarization potential on the diffusion

cross sections, as estimated in reference 6. We see that for temperatures

above about 1000°K, polarization should have only a minor effect on the cal-

culated diffusion cross sections _(i,i) so that the use of equation (120) for

(i,I) should be quite well justified in this temperature range.
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APPENDIX A

EXPLICIT SOLUTION OF THE ELENBAAS-HELLER ARC EQUATIONS

FOR THE TRANSPORT PROPERTIES

,, ., i _

One of, the fe_,!i_eth_m:,p_Bently ayailable for obtaining experimental values ' _ :ii ..'ii _ :

• (,_I0,000_'I_ i_'t}_e _an'atyS_S of-dat.a obtained on _a suitabie, cylindrically : _ :

symmetric electric arc (the "constricted" or "cascade" arc). This analysis

is based on the Elenbaas-Heller model for the arc column, which assumes

that the transport of energy out of the arc column is entirely due to radial

heat conduction and optically thin radiation, and that all arc properties are

independent of the axial coordinate. Thus the energy balance relation for

the column is reduced to a singl e ordinary differential equation in the radial

coordinate, r ,

i (dT)aE2 + " rK =0
r dr _ - Prad

(A-l)

where T is the gas temperature, a = a(T) and K= K(T) are the electrical and

thermal conductivities of the gas, Prad : Prad (T) is the radiated power per

unit volume, and E is the electric field strength in the axial direction (assumed

constant). The total arc" current I is given by the integrated Ohms's law for

the column

R
h"

I = 27r / aErdr
(A-Z)1o

where R is the column radius.

A number of different numerical techniques have been given for inverting

equations {A-l) and {A-Z) to obtain transport property values from experi-

mental arc data (references Al to A4) ',-'.In general these techniques are based

on some sort of an iterative procedure in which an initial form is assumed for

the properties a(T) and/or K(T), equations (A-l) and (A-2) are solved using

these assumed properties, and the results are compared with experiment.

The property values are then adjusted and the process repeated until satis-

factory agreement with experiment is obtained. Unfortunately this process

generally tends to be quite laborious numerically, and the accuracy which can

be obtained in the final property values is not clear. Further, the question of

the existence and uniqueness of the solutions for the transport properties has

never been studied, so that it is not known how much experimental information

*Also H. W, Emmon$ and K. Gop_fiakt{shna, Ilardard UMve_sity _unpublished data}.
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is actually required to determine the transport properties uniquely, or whether
the values which are derived from the abovenumerical analyses are the only
ones which could account for the observedexperimental data.

.... The preser_t study is. _ beginning towards a more systematic treatment of the

_i'_I'_:- problem of deriving tr_ns,port property values from electric arc data. We ,

i_:::_,_: ,. . deter_m.ir_ei:.,th, e-_a_nt iO_.._xp, eri_qnt_! in£ormatian which is required to deter,
_'_':_:._ i" _. " .. _ . . ':_ ,_:,' _ '':.', _,.',. :£,. ,._:_';:;:_"_:,_,i:_ , "" _ _ ;.,"_, _. : ,: . , " . ' ... .

'_""_'-'-"":'.-_'".-"_'- " (A-__t_e':'i_v_tc_t to 6bL_ _-Xpttci[ aflatyti'_ formulas for :these properties in _ "

terms of the measured data.

It must be pointed out, however, that this analysis is based upon the energy

equation in the Elenbaas-Heller form (A-I), which assumes that the arc

column is optically thin to its own thermal radiation. It has been demonstrated

during the present program that the arc column, at least in argon and nitrogen,

emit_ significant amounts of power at wavelengths in the far ultraviolet where

the gas is relatively opaque. Neither the Elenbaas-Heller equation (A-I) nor

the analysis presented in this appendix is accurately applicable to such arc

columns. However, it might be possible to carry out an analysis similar to

that presented here for the much more difficult problem of a cylindrical arc

column with radiative transfer.

The quantities in equations (A-l) and (A-2) which are susceptible to direct

experimental measurement are the arc current I , the electric field strength

E, the radial temperature distribution T(r), and the radiated power per unit

volume Prad (T). Let us assume that these quantities have been measured for

two different arc runs, I and Z, for all temperatures T greater than or equal

to some temperature T , where T is such that the arc current flowing in
o o

regions with T < ToiS negligible. (Ideally of course, T o should be equal to the

temperature of the tube wall confining the arc, but in practice, since the

electrical conductivity drops off so sharply at the lower temperatures, it is

not necessary to know the temperature distribution all the way out to the wall. )

We wish to consider the problem of obtaining the unknown functions o(T) and

K(T) from the above experimental data. One obvious condition which must be

satisifed by the experimental data in order for them to be consistent with

equations (A-I) and (A-2) can be obtained from the energy balance on the

column as a whole. Integrating equation (A-I) over the radial coordinate r and

using equation (A-2) we obtain this balance in the form

dT
- 2 rrR K (T o) = F. I- 2 _ Prad r dr (A-3)

r=R

where Ris now the radius at which T=T O and we have used the boundary
dT

condition that _= 0 at r = 0. All quantities in equation (A-3) are experimentally
dr
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measured except K(To), so that for two different arc runs to be consistent they

must given the same value of K(To). This gives the simple condition

R
t

E I - 2 n / Prad r dr

$*,L+
0

CI_ |R run 1

R
t*

EI - 2 n / Prad rdr

"0

, ,iT]_-2trt "_r K

(A.4)

fUll 2

which must be satisfied by the experimental data for the two runs in order for

them to be consistent with the Elenbaas-Heller model of the column (equations

A-1 and A-g). We assume henceforth in our analysis that condition (A-4) is

satisfied.

In order to solve equation (A-l) for the transport properties a and K, it is

convenient to treat T as the independent variable and to introduce the new

dependent variable

p =_ p(T) =- r E .

Equation (A-I) may then be written in the equivalent form

(A-5)

q d Prad (A-6)
a + (pKq) - 0

p dT E 2

where we have defined

1 dT 1 (A-7)
q(T) --- -- --

E dr dp/dT

Solving equation (A-6) for a(T) and co_nbining the results for the two different

arc runs gives

Prad ql d Prad q2 d
a(T) = (Pl ql K) (P2 q2 K) (A-8)

El2 Pl dT E22 P2 dT

where the subscripts 1 and 2 indicate the values for the two different runs,

and the values for each run are evaluated at the radial position r, where the

given value of T occurs for that run. Thus the data in equation (A-8) are

evaluated at different radial coordinates for the two runs, but at the same

temperatureT. The gas properties _, K and Pz in equation (A-8) are of course

not subscripted, since they are the same function of T for both runs.
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The last two members of equation (A-8) give a differential equation for K(T),

(01 ql K) (P2 q2 K) = Prad
Pl dT P2 dT E 2 E22

or) simplifying _and making use of equation (A-7),

Equation (A-9)is an ordinary, first order, linear, inhomogenous, differential

equation for K(T); it can be solved readily by elementary methods to give an

explicit formula for the thermal conductivity K(T) in terms of the observed

experimental data,

K(T) = K (T o )y (T) +

T

(ELI2) y(T) : prad(T')12 E " A2 (T')y (T')
O

aT" (A- 10a)

where

A (T) = /ql 2

A (T O )

y (T) = --
A(T)

2 (A-10b)
- q2

T

1 ql

exp -_ 71 dT" ,

0

(A-10c)

and the integration constant K(To) can be evaluated from equation (A-4).

According to the theory of linear differential equations) the solution (A-10}

is the only possible solution of equation (A-9) satisfying the boundary condition

(A-4), so that it follows that the thermal conductivity is uniquely determined

by the assumed experimental data.

The electrical conductivitya can now be determined directly from equation

(A-8), using the value of K(T} from equation (A-10}. Eliminating dK/dT between

equations (A-8) and (A-9) and simplifying the resulting expressions by the use

of (A-7) and (A-10b) one obtains the formula for _ in the form
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Prad 2 dK ql K d
a(T) =-- -ql (Pl ql

E1 2 dT Pl dT

2¸ .22) •

r- )Ji 2 2 d O1 ql ql 2 q2 2

= _ -- n + - -- Pra
A2 ql q2 dT P2 _2 K k_22 2 E1 2

(A-11)

.i:¸

where the thermal conductivity K = K(T) is given by equation (A-10). Since K(T)

is uniquely determined by the experimental data, it follows that the electrical

conductivity o(T) is also. We thus conclude that if the Elenbaas-Heller model

for the column (equations A-1 and A-2) is valid, then measurements of the arc

currents I, electric field strengths E, and radial temperature distributions

T(r) for two different arc runs, together with a knowledge of the radiated power

per unit volume Prad as a function of temperature, are sufficient data to deter-

mine the electrical and thermal conductivities of the gas uniquely as a function

of temperature, over the range of temperatures common to the two arc measure-

ments.

Although equations (A- 10) and (A- 1 1) provide unique we ll-de fined mathematical

expressions for the electrical and thermal conductivities o(T) and K(R9 for any

values of the experimental quantities El, I1 , rl (T), E 2, 1 2 , r2 (T) and Prad (T),

provided only that they satisfy the simple energy balance condition (A-4), these

mathematical expressions do not always correspond to physically meaningful

values of the transport properties; for example, one can readily find forms

for the radial temperature distributions T(r) which will yield negative, or even

imaginary, values of o and Kwhen substituted into equations (A-10) and (A-If).

Since the solutions (A-10) and (A-f1) are unique, one concludes that such tem-

perature distributions cannot actually occur in an arc satisfying the Elenbaas-

Heller equations (A-I) and (A-Z), and that if the experimentally measured data

for an actual arc leads to physically meaningless results when substituted into

equations (A-10) and (A-II), it indicates either that the data are in error or

that the Elenbaas-Heller model is not applicable to the arc for which the data

were obtained. Thus equations (A-10) and (A-f1) can be used to provide a test

of the validity of the Elenbaas-Heller model for a given arc facility. If data

are available for only two arc runs this will be only a relatively crude test,

since the arc would probably have to deviate rather strongly from the Elenbaas-

Heller model in order to cause the calculated transport properties to actually

go negative. However, if data are available for three or more arc runs then

a more sensitive test for deviations from Elenbaas-Heller theory could of

course be obtained by comparing the transport property values calculated for

the different pairs of runs.
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Equation (A-IO) for the thermal conductivity K involves first derivatives of the
measured temperature distributions, and equation (A-I I) for the electrical
conductivity o involves second derivatives. Since the temperature distributions

themselves are derived from the measured radiation intensities by inversion of

: the Abelintes_al , a procedure which is essentially equivalent to another

differentiation, one sees_ that the quantities K and a depend essentially on

Li_(:::/: _: ! :: . " see.__.'_"!_c:_._/_s.)t_}_$_tiylely, ' of'the measured quantities; a great .......

...... toobtaiHrne_n{ngf-ul:_l_es:o'f:'th_e-:transportproperties a and K. r The measure::. ' :- '

ments can be made very accurately, however, so that it does not appear that

this degree of refinement is out of the question. (It should be pointed out that

this difficulty is not peculiar to the present method of data analysis; any other

scheme for obtaininga andK from the experimental data is essentially

equivalent to our equations (A-10) and (A-11) and suffers from the same

difficulty. In particular, the difficulty of obtaining a smooth curve for a (T) from

the experimental data has been known for a long time; A1,A3 our equation (A-11}

simply displays the reason for this difficulty more explicitly. ) A further en-

couraging circumstance is that to obtain accurate values of the transport pro-

perties, it is not necessary to know the actual absolute temperatures with high

accuracy, but merely the correspondence between points having the same tem-

perature for the two arc runs. In fact, if0 = 0(T) is some function of the tem-

perature, such as, for example, the absolute intensity of some spectral line,

then equation (A-I) can be written in the form

crE 2 + h
r dr _ - Prad = 0 {A-1Za)

with

dT
h _ K _ (A- lZb)

dO

and equations (A-Z) and (A-1Za) can be solved just as before to give a(0) and

(0) in terms of the radiaI distributions of 0 and the radiated power Prad"

The heat conduction potential S - KdT can then be found as a function of 0 from

the equation

0 0

S = K d--O dO = X d 0 (A-13)

Thus, even without knowing the relation between 0 and T, it is possible to find

the important function a (S) which is required for calculating the arc character-

istics. Further, one sees from equation (A-12b) that the error in the thermal
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conductivity due to uncertainties in 0(T) is simply proportional to the error in

dT/dO , so that 0(T) need not be known with particularly high accuracy in order

to obtain satisfactory accuracy foroandK (in actual practice, errors in0(T)

and dT/d_ seldom exceed a few percent. )
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APPENDIX B

ANALYTIC CURVEFITS TO ARC TEMPERATURE DISTRIBUTIONS

All of the methods for determining transport properties from arc data by

solving the_:._l_nb_srHel!e_r _quation •require evaluation of derivatives of the . . ..... :

flrst.di_x'zv_tive, dT:/dx_:;--_nars :heen_flescrtbedm, Sectlon liE, The present : . : :

appendix discusses an alternative procedure, in which the points of the experi-

mental temperature distribution, obtained by Abel inversion of the lateral

integrated intensity data, are curvefitted by analytic functions, and the deri-

vatives are obtained by differentiating the curvefit analytically.

For the two-run method (based upon the analysis presented in Appendix A), it

is most convenient to fit the radius as a function of temperature, r (T), rather

than temperature as a function of radius, T(r). It is known that at the axis

( r = 0), the derivative dT/dr = 0 and the temperature is the experimental axis

temperature, T a . These features can be built into the curvefit by choosing a

function of the form

r 2 = Q f(Q) (B-l)

where

Q =_ I_T/Ta (B-Z)

The following four-parameter* curvefits of the form (B-I) have been found use -

ful for fitting argon arc-column temperature distributions:

2
Form l: r

C 2 + C 3 Q C4

for Q <-Qm

C 4 - 1

C 2 C 4
Qm for Q > Qm

(B-3)

where Qm is glven by

3 (C4 - 1

1/C 4

Form 2: r 2 = Q(C 2 + C 3 Q C4)

*The four parameters are, in each case, Ta, C2, C 3, C 4.

(B-4)
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Q

C4Q
Form 3: r 2 = C2 + C3 e

c 4 Qm-1

C2 C4

c 2 + c 3 (1 - c 4 Qm) ec4 Q_

Form 4__._.! r2 = Q( C2 + C 3 e -C4 Q)

forQ <_

Qm for Q > Qm

=0

(B-5)

(B-6)

The changes in form at Q = Qm in (B-3) and (B-5) prevent the distributions from
turning back on themselves {predicting a fictitious region of negative dT/dr in

which T would be a double-valued function of r). In each case, Qm is the value
of Q at which r reaches its maximum value.

Fitting the functions (B-3) to (B-6) to experimental data is best accomplished

by plotting

U _ Q/r 2 (B=7a)

and

V -=r2/Q (B-7b)

versus Q in various ways, the object being to obtain a plot in which the data

points fall along a straight line to a close approximation. The slope and in-

tercept of the line then determine two of the constants C i. Table B-1 summarizes

the cases which provide fits of the types (B-3) to (B-6). For the cases re-

presented by the last four rows of this table, the parameter C2 must be deter-

mined essentially by trial and error.

To minimize the labor of fitting experimental temperature distributions by this

method, a computer program was written to calculate Q, u, and V and to prepare

plots of the types listed in Table B-1 using the S-G 4020 automatic plotter.

The final fits obtained for the argon data are summarized in Table B-2. In

some cases, the four-parameter analytic forms (B-3) to (B-6) are not sufficiently

flexible to represent the data accurately over the full range. For this reason,

two fits are given for each arc current (except 80 amps), one selected to fit

the lower _nd the other the upper part of the temperature range covered by the
experimental distributions.

No fits were made to the nitrogen data.
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TABLE B-I

CORRESPONDENGE BETWEEN FORM OF CURVEFIT

AND TYPE OF PLOT YIELDING A LINEAR

GORRELATION OF THE DATA

...._,_"_...." ,,:ii_'_I_.....'_I

Uvs. q

Vvs. Q

log(U-C 2) vs. log Q

log (V-C2) vs. log Q

In (U-C2) vs. Q

in (V-C2) vs. Q

Form 1 with C 4 : 1 { C 3

Form Z with C 4 : 1

Form 1

Form Z

Form 3

Form 4

C 2

C 3 C 2

C 4 log C 3

C 4 log C 3

C 4 In C 3

-C 4 in C 3
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APPENDIX C

THE TWO-RUN METHOD OF ANALYZING WALL-STABILIZED ARC DATA

TO OBTAIN TRANSPORT PROPERTIES

t:.,._:....' A procedure.haS been de_e!oped for analyzing arc data to obtain thermal con. "

k"_::::_._ . .....' duc_iVi_ _,a_.electr_al cond_ctivzt_,. based upotithe-exphCit soii_tion of the
. ' ._, _Z' ....................................

"optically thin" Elenbaas,Heller equations (presented in appendix A). Since

this procedure requires the use of data for two arc runs with different axial

temperatures, it is briefly termed the "two-run method 'r.

As pointed out in appendix A, the analysis presented there is based upon the

energy equation in the form {A-I) which assumes that the arc column is op-

tically thin to its own thermal radiation, while actual arc colm-nns in argon and

nitrogen have been found to be more or less opaque at least in some regions,

to the substantial amounts of radiation emitted in the far ultraviolet. The two-

run method was developed at a stage in the present program when the importance

of vacuum ultraviolet radiation in wall-stabilized arc columns had not yet

become apparent. In fact, the discrepancies established by applying the two-

run method to the data for argon helped to stimulate the reexamination of as-

sumptions which led to realization of the significance of far ultraviolet radiation.

Even though the two-run method in its existing form is not accurately applicable

to argon and nitrogen arc columns at atmospheric pressure, it is summarized

in the present appendix to document the discrepancies found in the argon data.

Also, the method might be applicable to arc columns in other gases or at lower

pressures.

In this technique of data analysis, the thermal conductivity is calculated as a

function of temperature using equation (A-10) of appendix A, and the electrical

conductivity using equation (A-If). The derivatives of the temperature distri-

butions for the two runs, which determine the quantities q! ' q2 ' 52' and

d[In (Plql /P2q2 )] /dT, are evaluated by differentiating analytical curvefits to

the temperature distributions, such as those discussed in Appendix B. The

smoothing of the experimental temperature data provided by this use of analytical

distribution functions also makes programming of the numerical integrations in

(A-10) more convenient.

The radiative power loss per unit volume, Prad (T), is also represented by an

analytical curvefit. In the analysis of the argon data, the function

iI  12T 1l°gl0 Prad = A1T - A 2- _ A 1 (T- T i) + - + A 3 (C-l)

with
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A 1 = 7. 37 x 10 -4

A 2 = 5. 67

T i = 13030

^3 : --__-0.7396. ........

was Usea':toapproximate _he:_easured radiative powerioss in the in£rared,

visible, and near ultraviolet spectral regions. This equation gives Prad in
w/cm 3 with T in °K.

In equation (A-10a), the quantity K(_) represents the thermal conductivity of

the gas at the temperature T o at which the two-run calculation is started. This

quantity is not provided by the two-run method, but must be obtained by some

other means. In the two-run calculations for argon, reported in section liE,

K(To) was obtained from the experimental data using the measured-current

energy balance method, also discussed in that section.

A number of test cases have been run to verify the correctness of the program

for the two-run method, and to investigate the sensitivity of the method to

errors in the input data.

1. Simplified Analytical Solution

For a fictitious gas with the properties

K = AT (C -2a)

Prad = constant (C-2b)

a = constant (C- 2c)

the Elenbaas-Heller equation (A-l) has the simple analytical solution

r2 = I - (C-3)

o E2 - Prad

where T a denotes the axial temperature. Moreover, if Tm denotes the

temperature at the outer boundary of the column, the total current for

this model is given by

2rr Aa E (Ta2 - Tin2 )
z. (c-4)

a E 2 - Prad
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The program for the two-run method was applied to three cases of this

simplified model. The results agreed with the assumed analytical pro-

perties (C-2a), (C-2c} exactly to within the four-figure accuracy permitted

by the output format of the program.

2. Numerical Solutions of the Elenbaas-Heller Equation for Argon

_._r_r_:_fO_"-_ho __O-'_itr_rnethod has also been applied to nume rical

solutions of the Eienbaas-Heiier equation for argon, computed using a

program (1289C) already available at Avco RAD. The temperature dis-

tributions computed by 1289C for the four cases summarized in table C-I

were curvefitted using the techniques described in appendix B. These

curvefits, which were accurate to within 10°K in the range from I0,000

to IZ,000°K, were used in the two-run calculations. The thermal con-

ductivities obtained by the two-run method from these data agreed with

the values assumed in the IZ89C calculations to within about 10 percent,

as shown in figure C-I. The electrical conductivities obtained {figure C-g)

showed similar accuracy through most of the temperature range considered,

but scattered widely near the lowest temperature used (10, 000 °K).

3. Sensitivity Studies

A few other test calculations were carried out, in which the two-run method

was applied to "data" from numerical solutions of the Elenbaas-Heller

equation, in order to study the sensitivity of the method to errors in input

data. This investigation was not sufficiently comprehensive to establish

the sensitivity to all input quantities in all regimes, but did provide the

following indications :

a. In regions where the temperature gradient is very large (i.e.,

in the peripheral region of the arc column), the two-run method is

extremely sensitive to errors in the shape of the temperature distribution.

b. The method becomes more sensitive to errors as the difference

in axis temperature between the two runs decreases.
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TABLE C-I

SUMMARY OF CASES FOR TEST OF THE TWO-RUN

METHOD ON NUMERICAL SOLUTIONS OF THE

' . .,_ , ,-_ _LI_NBAAS-HELLER EQUATION

•Case No.

1

Z

3

4

Axial

Temperature

(°K)

11500

12000

13000

15000

Current

(amp)

32.58

41.94

83.75

44. O9

Voltage
Gradient

(V/cm)

10

10

10

Z5

Column

Radius

(em)

0.2271

0. 2385

0. 2907

0.1174
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APPENDIX D

THE EFFECT OF PAIRED ELECTRONS ON THE SPIN DEPENDENCE

OF THE POTENTIALS

•. In thim apl_ndim:[_ '__s.h tO show•thor ,fOr. a ilg_:ra !.Perrr_utationr in which no _ ,..

electron isl excl_anged between th_ _atom and idni _ or in which only one electron "

is exchanged, the quantities as (r) and bS (r) defined in eq. (36) can be factored

into a permutation dependent part and a spin dependent part, as stated in the

text. We first note that since the orbital part of the wavefunction U (_) (eq. 32)

is not affected by interchanging two paired electrons, the spin function a (i) _(j)

for any two paired electrons in eq. (32) can be replaced by the new function

1
(i,J) -= -- [aft)#8(i)- _(J)_8(i)] (D- 1)

2

without changing the value of the matrix elements (35). With this transforma-

tion, one sees that the spin functions in eq. (38a) can all be written in the
gM S

general form

gMs (1 .... , n) : hMs (1 .... , m) (m + l, m + 2) .... (n - 1, in) (D-2)

where n is the total number of electrons in the atom or ion, m is the number of

unpaired electrons, and the function hMs is totally symmetric with respect to

permutations of the m unpaired electrons in its argument. With the form (D-2)

for the spin functions, it is possible to carry out the sum over spins in eq. (36)

explicitly for the paired electrons by using the following identities, which are

readily derived from the usual orthonormality properties of the one-electron

spin functions _ and _:

(i, j) = - (j, i)

E 1 (D-3)(i, j)(i, j) 2

i,j

(i, i) (i, k) H(i, k, 11 .... , In ) = H (k, k, l I .... , In )

i,j

where the sums are over the spins of the indicated electrons, and it is assumed

that each term in the factor Hcontains either the factor a(j) or #(j). When

eq. (D-3) is applied to perform the summations in eq. (36), we note that it is

not necessary to place any restrictions on the form of the function H, since
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from the form of the wavefunctions one sees that each term under the summation

in eq. (36) consists of a product of spin functions in which each electron under

consideration occurs exactly twice, and hence the assumed form of H is obtained

automatically.

Equations (D-Z) and (D-3) may now be applied to evaluate the spin-factor a s (r)

for a genera! permutation, in which no electron is exchanged between the atom )

and i_ ''. ;/')F6r thi_'¢a_e, !eqt,afions (Zl) and (Z3) may be combiixed to y_eld the

equati on.

a S (r) =

M1, M2, M3, M4

C(M 1, M2; S,M S )C(M3, M4; S,M S)

(D-4)

where r" and r'" are arbitrary permutations of the integers 1 through N and 1

through N-1 respectively. For the spin functions gM of eq. (D-2), we see that

each of the factors in the square brackets in equatioSn (D-4) will be of the general

form

_'_ [hMi(1 ..... m) (m + 1, m + 2) ... (n - l,n) ]

1,...,n

• [hMj (rl ..... rm) (rm+ 1, rm+ 2) "'" (rn - 1, rn) ] (D- 5)

where r is some permutation of the integers 1 through n. Now, if any of the

integers rm+l, rm+ 2 ..... r is equal to any of the integers m+l through n, then

we see that eq. (D-3) may be applied to eliminate twoelectrons and two of the

functions (i, j) (eq. D-I) from the expression (D-5), to yield a reduced expres-

sion of the form

A (r)
L [hMi(1 ..... m)(m+ 1, m+ 2)... (n- 3, n- 2)

]

1, ... ,n-2

. [hMj (r{, r' r ....
"" m )( re+l, rm+2)'"(rrt--3' rn-2)]

(D- 5')
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where A(r ) is a constant depending only on the permutation r, r" is some new

permutation of the integers 1 through n-2. and it is important to note that each

of the remaining electrons 1 through n-2in (D-5') occurs once in the first bracket

and once in the second. The reduced expression (D-5') is thus of the same form

as the original expression (D-5). but with two fewer electrons. This process of

reduction may evidently be repeated until one arrives at an expression of the form

(D-5'} in Which there is no electron which is paired in both the first bracket and

the Sev, o_b_acket. There 'are then two possibilities; either there are no paired

electrons left at all, in which case. because of the assumed symmetryof the

functions hMs with respect to electron permutations, equation (D-5'} can be put
in the form

A(r) _L hMi(l'"''m) hMj (1,...,m),

l,...,m

(D-6)

or else there are two electrons, say m+l and m+ 2 , which are paired with each

other in the first bracket and unpaired in the second. In this latter case however,

we note that the pairing function (D-I) is antisymmetric in the electron coordinates

whereas the unpaired electrons are assumed to be symmetric, so that the expres-

sion (D-5') vanishes from symmetry considerations. Thus we see that for this

case also the expression (D-5') can be written in the form (D-6) by taking the co-

efficient h(r ) in (D-6) equal to zero. It thus follows that for spinfunctions of

the form (D-2) in which the unpaired electrons are completely symmetric, the

expression (D-5) can always be reduced to the form (D-6) in which the dependence

on the permutation r is contained entirely in the first factor A(r ) and the depend-

ence on spin entirely in the second factor. Substituting this result into eq. (D-4),

we obtain the expression for aS (r) in the form

as(r ) = A(r')A +(r'') _ C(M1, M2; S, MS )C(M3, M4; S, MS)

M1, M2, M3, M4

hM1 (1,...,m) hM3(1 ..... m h+ (1,...,m4)hM4(1 ..... m

1.... ,m 1, ...,m + M2
(D-7)

in which the first factor A(r" ) A+ (r'") contains the entire dependence on the

permutation r and the second factor contains the entire spin dependence, Eq,

(D-7) thus demonstrates the desired factorization of the function a s( r} into

permutation and spin dependent parts, and in addition provides an explicit for-

mula for the spin dependence of the potentials in terms of the spin functions hbt s
and the Clebsch-Gordan coefficients. One readily verifies from eqs. (34} and

(38) that this formula is equivalent to the formula (39} given in the text, as it

should be.
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We now turn to the case in which a single electron is transferred from the atom

to the ion, and attempt to evaluate the function b s ( r ). For this case, eqs. (34)

and (36) give the expression for bs (r)in the form

bs(r) -- .._-_ .c (Mv, M2; .S' _s).C (M3, M4; S, _S)

gM4(1..... N-l) gM1 (q ....

(D-8)

where z" and r'" again represent two arbitrary permutations of the integers 1

through N. The spin functions (D-2) may now be substituted into eq. (D-8) and

the resulting expresssions reduced by the same methods as in the case of the

expression (D-5) above. One finds that there are different cases according to

the relative number of unpaired electrons in the atom and ion. Since the atom

contains one more electron than the ion and the number of paired electrons must

always be even, the difference m-re+between the number of unpaired electrons

in the atom and ion must be odd. Applying the methods which were used pre-

x4ously in the reduction of expression (D.-5), one finds readily that for the var-

ious possible values, m-m +, the quantity

Xr (N) -= _ g_4i (1 ....,N - 1) gMi (r 1 .....rN)
F

I....,N-1

(D-9)

which occurs in eq.

Xr (N) = 0

xr(N) = A(r)

(D-8) must reduce to the following forms:

for [m--m+l >_3

(1 .... ,m +,N) for ra- = 1
h+

(1 ..... m+) hMj
m +

Mi

I,...,m +

(D- 10)

X--m
Xr(N) = A(r) L h +Mi (1 ..... m)(m +, N)( 1.... , m+) hMj

I, ... ,m +

fO_ m -- m + = --I

Substituting eq. (D-10) into (D-8) and ueing eq. (D-3) to perform the sum over

the remaining electron pair in the case m-m+= -i, we obtain the expressions

for bs (r) in the form
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bS(r) = 0 for Im-rn+]_) 3

C(M1,M2;S,MS)C(M 3, M4; S, MS )bs(r) = A(r')A(r")

,__.,,_ F_,.,%_;...... 5 ! : ..... ';7 " : _ i : : " m+, NIJ "

--.--L / ____+ h_4(1 ..... m+) hM1 (I .....

N L1, ... , m

7

I1 _ h + (1,... m+,N) ] for m- m+ = 1
M2 (1 ..... m+) hM3 l

J

bs(r ) = --_A(r')A(r") C(M 1, M2; S, MS) C(M 3, M4; S, Ms )

M1, M2, M3, M4

(D-I I)

'_I_ h+M4 .... N) hM1 ..... _ Ii_ M2 (1 m'.... 'm t
(1, m, (1 m h + , N)hM3 (1, ...

N ...,m ,...,m

The desired factorization of b s ( r ) is thus obtained in all cases, as we wished

to show. Again, the expression for the spin dependence given by eq. (D-11)is

readily shown to be equivalent to that given by eq. (39) of the text.

for m--m + = -- [
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APPENDIX E

EXPLICIT FORMULAS FOR THE TWO-CENTER OVERLAP, KINETIC

ENERGY, AND HYBRID INTEGRALS FOR N-N + AND O-O +

Thislappendi_ pr_sents_xplicit tormulas for the two.center overlap integrals
•S{a, T(a,a), and the hybrid

integrals L for the N-N+andO-O + systems. These formulas were calculated from

the general expression for these integrals given in section Ill.F of the main text,

using the wavefunction parameters for nitrogen and oxygen given in tables I and

IV. Specifically, the overlap integrals S(a,/_)were calculated from eqs. (91) and

(94) of the text, the kinetic energy integrals T (a,a) from eqs. (96) aud (97), the

hybrid integrals L and E(L) for the [I-states from eqs. (I05), (I07), (I08), and

(Ill), and finally the hybrid integrals E(L) for the E -states were calculated

from eq. (If0) and the previously calculated values of E(L) for the if-states.

For N-N+the resulting formulas for the integrals in atomic units were:

S (s, s) = (0.0851093 R4 + 0.267018 R 3 ÷ 0.670184 R 2 + 27.3827 R +

- 125.167 + 228.678R -1) e -1"5937R

1
_.-- S (s, 2c0 = (42.1232 R - 539.138 + 2330.64 R-1 + 1952.45 R-2) e-1"1937 R
V3

- (4244.351 R + 221032.9 + 3830864R -1 + 2237131 R-2) e-1"7124R

+ (4389.286R - 218677.3 + 3562457R -1 + 2235337R-2) e -1"5937R

S (2rr, 2n) = (0.0100219 R3 + 0.0503739 R2 + 0.105499 R + 28.4690 +

- 262.928 R-1 + 828.656 R-2 + 694.174 R-3) e -1"1937 R +

+ (0.0783714 R3 + 0.274602 R2 + 0.400903 R - 12.0709 +

- 284.209 R -1 - 1161.60 R -2 - 678.347 R-3) e-1"7124 R

d
S(2c%2o) = - _ [RS (2n, 2n)]

dR

= (0.0119651 R4 + 0.0200438 R3 - 0.0251870 K2 + 33.7724 R +
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- 342.326 + 989.143 R -I + 11657.27R -2 + 1388.35 R-3) e -1"1937 R

iT_ ¸

T(2n, 2u)

+ (0.134203R 4 + 0.156743 R 3 - 0.137301 R 2- 21.4720R - 474.609 -_

a-1 2353.20a-2 - m6.69 a-b o- i.  24

= (-0.00714020 R 3 + 0.0239263 R 2 + 0.0751638 R - 20.1571 +

+ 255.082 R -1 - 904.227R -2 - 757.500 R -3) e -1"1937R

_- (-0.114905 R 3 + 0.268406R 2 + 0.587787 R + 18.3843 +

+ 374.553 R -1 + 1216.408 R -2 + 710.353 R -3) e -1"7124R

T (2 or, 2(r)
d

[RT (2n, 2n)]
dR

= (-0.00852326R 4 + 0.0571216R3+ 0.0179447 R 2 - 24.2119R +

+ 324.648 - 1079.38R -I -,1808.45 R-2 - 1515.00R -3)×e -1"1937 R

+ (-0.196763 R 4 + 0.919240 R 3 + 0.201304 R 2 + 30.3057 R +

+ 623.000 + 2082.98R -1+2432.42R -2+ 1420.71 R -3) x e -1"7124R

L 1 = (-0.050110R 2 - 0.125936R - 6.72215 + 10.6530R -1 +

+ 40.0715 R -2 + 35.5692 R -3) e -I loa7R

- (0.391859R 2 + 0.686510R + 9.96301 + 34.8898R -1 +

+ 51.8177 R -2 + 30.2603 R -3) e- 1.7124 R for 17[-- states

= (--1.66934 + 6.91528R -1 - 14.7032R -2 - 12.3173R -3) e -1"1937 R

+ (18.7899 + 374.3309R -1 + 3114.823 R -2 + 1818.981 R -3) e -1"7124R

+ [-7.59189R -1 - 2875.303 R -2 - 1783.395 R -3

+ 2.85277K n(1.5937, R)] e -1"5937 R for [I- states
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_'2(P)

L(;)

'T(s)
3

L(p)
3

(L)
E

(L)
E

[-0.08038 + 8.2110R -1 + 15.0997R -2 - 3.6371 R -3

-1.67527 Kn(1.1937 , R)] e -1"1937 R

+ [10.0396 + 21.7380R -I + 13.6039 R -2 - 57.3906 R -3

?:_i 74 _ 124_R: :"_: for I'I -. states

= [-0.530302 + 0.308247 R -1 - 0.066899 R -2 - 0.056043 R -3] e-1"1937 R

+ [-2.58473 + 2.36511 R -1 - 0.811604 R -2 - 0.473957 R -3] e -1"7124 R

for II - states

= [0.291307 - 0.233250 R -1 - 0.032966 R -2 - 0.027616 R -3] e -1"1937 R

+ [1.48587 - 1.50057R -1 + 0.531236R -2 + 0.310229R-31 e -1"7124R

for [1 - states

= [0.747603 - 0.168883 R -1 + 0.022669 R -2 + 0.018990 R -3] e -1"1937 R

+ [3.23298 - 1.16355 R -I +0.252947 R-2 +0.147715 R -3] e -1"7124R

for [1 - states

= [-0.050110 R2 - 0.125936 R - 7.96326 + 25.6853 R -1 +

+ 40.3908 R -2 + 17.5501 R -3 1 /.-_¢-_-_ v r lo_-_- ,.o,,, .... rr _I ...... R)] e -1"1937 R

+ [-0.391859 R 2 - 0.686510 R + 21.0006 + 360.0880 R-1

+ 3096.581 R -2 + 1731.265 R -3 - 9.6407 Krr(1.7124 , R)] e -1"7124 R

+ [-7.59189R -1 - 2875.303R -2 - 1783.395 R -3 + 2.85277 K n(1.5937,R)] e -1"5937R

for 1"I- states

= [-0.059816R 3-9.33351R + 38.6238 + 48.214R -1

+ 61.340R -2 + 35.099R -3 - 1.67527K a(1.1937, R)] e -1'1937R

+ [0.671019R 3 +37.3345R+596.970 + 5268.34 R -1 +
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+ 6041.202 R -2 + 3462.531 R -3 - 9.64074K o(1.7124, R)] e -1"7124 R

- [12.0992 + 4582.370 R-1 + 5717.5000R -2 +

:_ . + 5566.790 R "3 - 2.85277 Ko (1_59_'7 , R)] e'LS_ 37R • .

_ ......._::., -_ ; ,._;:_i.;_;_ _:._ _:_i • ,i ..... _ "_:_,_i: _ : '.i_ ..... !
for _ -- states_ ......

where the functions K= and KCare defined by equation (i14).

The corresponding formulas for o-O+were:

S(s, s) = [0.134951 R 4 + 0.359064 R 3 + 0.764290 R 2 + 22.7643 R

- 84.4620 + 126.532 R-l] e -1"8792 R

= [5.27234R - 32.5516 + 68.5735 R -1 + 59.4431 R -2] e -1"1536R

+ [21698.33 R - 1539709.4 + 36305670 R -1 + 20214738 R-2] e -1"7960 R

+ [- 21180.46R - 1550985.5 - 37987572 R -1 - 20214757 R -2] e -1"8792 R

S (2n, 2,) = [0.00274369 R 3 + 0.0142702 R 2 + 0.0309254 R + 10.20009

- 72.3595 R -1 + 175.354R -2 + 152.006R -3] e -1"1536R

+ [0.128133R 3 +0.428062R 2 +0.595854R +0.340741 -87.7763R -1

- 259.463 R -2 - 144.467 R -3] e -1"7960 R

S (2o, 2 o) = [0.00316512R 4 +0.00548738R 3 -0.0071351R 2 + 11.7050R-93.6740

+ 202.288R -1 + 350.708R -2 +304.012R -3] e -1"1536R

+ [0.230127R 4 + 0.256266R 3 -0.214031R 2 -0.579738R - 157.987

- 465.995 R -1 - 518.925 R -2 - 288.934 R -3] e -1"7960 R
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T(2n, 2n) = [-0.00182564 R 3 +0.00633022R 2 +0.0205777R -6.75143

+ 71.6196R -1 -200.154R -2 - 173.504R -3] e -1"1536R

+ [-0.206654 R 3 + 0.460254 R 2 + 0.960999 R + 0.520605 + 141.599 R -1

' :, +1260:.817R'2 + 145..221R -3] e -1"7960R

T (2o, 2e) = [-0.00210606 R 4 + 0.0146051 R 3 + 0.00474767 R 2 - 7.82960 R + 89.3718

-230.897R -1 -400.308R -2 - 347.007R -3] e -1"1536R

+ [-0.371151R 4 + 1.65323R 3 +0.345191R 2 -0.955755 R +253.790

+ 468.428 R -1 + 521.634 R -2 + 290.442 R -3] e -1"7960 R

L 1

,,, (s)
L 2

.o(p)
L 2

= [-0.0137184 R 2 - 0.0356755 R - 2.87940 + 2.69394 R -1

+ 13.0071R -2 + 11.2752R -3] e -1"1536R

+ [-0.640666 R 2 - 1.070155 R - 7.16992 - 13.0924 R -1 - 16.2419 R -2

- 9.04335 R -3] e -1"7960 R

for FI - states

=[-0.48635 + 1.00299R -1 - 1.03559R -2 -0.89770R -3] e -1"1536R

+ [-37.1786 + 888.4960 R -1 - 10563.174 R -2 - 5881.500 R -3] e -1"7960 R

+ [24.59807 R -1 + 11067.987R -2 + 5908.653 R -3 + 3.900762 K n (1.8792, R)] e -1"8792 R

for H - states

= 0

= [-0.204512 +0.083756R -1 -0.012999R -2 -0.011268R -3] e -1"1536R

+ [-2.59444 + 1.81212 R-1 - 0.48113 R -2 - 0.26789 R-3] e -1"7960 R

for H - states
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,_(s)
3

. (p) •
z_3

(L)
E

(L)
E

= [0.11711 -0.055855 R -1 + 0.008662 R -2 +0.007509R -3] e -1"1536R

+ [1.52536 - 1.21066R -1 + 0.32395 R-2 + 0.18037R -3] e -1"7960R

.... ...... for II - states

= [-0.342771 + 0.175055 R "_t " 0.023805 R -2 0.020636 R -3] e -I'1536 R

+ [-4.56353 + 4.15762R -1 - 1.02108 R -2 - 0.56853R -3 ] e -1"7960R

for [I - states

= [-0.0137184R 2 - 0.0356755 R - 3.79593 4 3.89989R -I + 11.9434R -2

+ 10.3531 R -3] e -1"1536 R

+ [-0.640666 R 2 - 1.070155 R - 49.98108 + 880.1627 R -1

- 10580.594 R -2 - 5891.199 R -3] e -1"7960 R

+ [24.59807 R -1 + 11067.987 R =2 + 5908.653 R -3 + 3.900762 Krt (1.8792, R)] e -1"8792 R

for 11 - states

= [-0.0158255 R 3 - 4.30763 R + 8.29484 + 13.7779R -1 + 23.8867R -2+20.7062R -3] e -1"1536R

+ [-1.15064R 3 - 88.6253 R + 1639.5549 - 19002.747R -1 - 21161.188 R -2

- 11782.398 R -3] e -1"7960 R

+ [39.30943 + 20798.961 R -1 + 22135.974 R -2 + 11817.306 R -3

+ 3.900762 K a (1.8792, R)] e -1"8792 R

for 5_ _ states
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APPENDIX F

A RELATION AMONG THE FUNCTIONS c )'8_
a'8

In this apl_n_ we _shlto de_ive a useful relationship, between the functions

respect to R, wefind that: .... _ : .....

2[ R YSe 3 )p_ea-'-E"car (CaR,CbR) = (a+'8 + z + _ + 2(+ 2)c,,'8(p,,,pb)

. . ,.

(Pb/2)a+,8+y+8+2(+l i i ](Pa÷Pb)_ - T (P,,- Pb)n

1 1

- '_"(Pa + Pb )_"- '_"(Pa- Pb)q
x e (_.+,/)a(_._ ,/),8(1 + _'_?)Y(I- _.1)8(_-2_ IX (I - T/2)((F-l)

where we have introduced the notation

Pa = CaR

Pb = Cbr (F-Z)

on the right-hand-side of eq. (F-1). The factor in the square brackets in eq.

(F-1) may now be eliminated by dividing it into two terms and integrating each

term separately by parts using the factors dv - exp [-+(pa+Pb)f]df and

dv_exp[ l(p _pk) _] 4_ res ectivelyin the parts inte rations Substituting for
_ _ a _ _ P g •

cYj from eq. (lOZ) and integrating by parts as indicated above, eq. (F- !)becomes:

_o 1

Y_( (Pb/2_+'8+Y+8+2(+l / /
cl [R (_'aR, CbR)] d_ dr/

OR Carl =. •

1 -1

1 1

x e-'_" (Pa + Pb )_ -'_ (Pa - Pb )'/(_'+_,)a(_._ _)'8(I+ _"9)y (I - _'T/)_ (_'2- i)( (I - *12)(
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-- +

1 + _+_/ _-r/ l+_r/ 1-_/

/. /i= (Pb/2) a+_+y+8+2_+l d_ drI

1 -1

?

1 1

_- 2 (Pa-Pb)_-T (Pa-PB)_× (_ + _7)a(¢-'r/) fl(l+erl) y(1-eU) _(t 2- 1) (1-r/2) e

x y k 1+_:rt] kl'_'_ ] - 2, , > 1(if2_ 1)(1-72 )

The right-hand side of this equation may now be expressed in terms of G-func-

tions by the use of equation (102) to yield the general relationship:

O [ R ySe 1 y-l,8+l,_ ),+1,8-1, ea'-_ Carl (ca r, _'b R) = Y C:a/8 (Pa' Pb ) + 3 Carl (Pa' Pb )

y+l,3+l,e-1
- 2e Car l (Pa, Pb ) for _ > 1 (F-3)

The desired identity (109) can now be obtained by setting y=8=0 and _= lin eq.

(F- 3).
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